The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transform...The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transformation,which reduces the system to the one without impacts or velocity jumps,and thereby permits the applications of asymptotic averaging over the period for slowly varying the inphase and quadrature responses.The averaged stochastic equations are exactly solved by the method of moments for the mean square response amplitude for the case of zero offset.A perturbation-based moment closure scheme is proposed for the case of nonzero offset.The effects of damping,detuning,and bandwidth and magnitudes of the random excitations are analyzed.The theoretical analyses are verified by the numerical results.The theoretical analyses and numerical simulations show that the peak amplitudes can be strongly reduced at the large detunings.展开更多
The vibroimpact systems with bilateral barriers are often encountered in practice.However,the dynamics of the vibroimpact system with bilateral barriers is full of challenges.Few closed-form solutions were obtained.In...The vibroimpact systems with bilateral barriers are often encountered in practice.However,the dynamics of the vibroimpact system with bilateral barriers is full of challenges.Few closed-form solutions were obtained.In this paper,we propose a novel method for random vibration analysis of single-degree-of-freedom(SDOF)vibroim-pact systems with bilateral barriers under Gaussian white noise excitations.A periodic approximate transformation is employed to convert the equations of the motion to a con-tinuous form.The probabilistic description of the system is subsequently defined through the corresponding Fokker-Planck-Kolmogorov(FPK)equation.The closed-form station-ary probability density function(PDF)of the response is obtained by solving the reduced FPK equation and using the proposed iterative method of weighted residue together with the concepts of the circulatory probability flow and the potential probability flow.Finally,the versatility of the proposed approach is demonstrated by its application to two typical examples.Note that the solution obtained by using the proposed method can be used as the benchmark to examine the accuracy of approximate solutions obtained by other methods.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10772046 and 50978058)the Natural Science Foundation of Guangdong Province of China (Nos. 7010407 and 05300566)
文摘The subharmonic response of a single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to the narrow-band random excitation is investigated.The analysis is based on a special Zhuravlev transformation,which reduces the system to the one without impacts or velocity jumps,and thereby permits the applications of asymptotic averaging over the period for slowly varying the inphase and quadrature responses.The averaged stochastic equations are exactly solved by the method of moments for the mean square response amplitude for the case of zero offset.A perturbation-based moment closure scheme is proposed for the case of nonzero offset.The effects of damping,detuning,and bandwidth and magnitudes of the random excitations are analyzed.The theoretical analyses are verified by the numerical results.The theoretical analyses and numerical simulations show that the peak amplitudes can be strongly reduced at the large detunings.
基金Project supported by the National Natural Science Foundation of China(Nos.11672111,11332008,11572215,and 11602089)the Program for New Century Excellent Talents in Fujian Province University+1 种基金the Natural Science Foundation of Fujian Province of China(No.2019J01049)the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(Nos.ZQNYX307 and ZQNYX505)
文摘The vibroimpact systems with bilateral barriers are often encountered in practice.However,the dynamics of the vibroimpact system with bilateral barriers is full of challenges.Few closed-form solutions were obtained.In this paper,we propose a novel method for random vibration analysis of single-degree-of-freedom(SDOF)vibroim-pact systems with bilateral barriers under Gaussian white noise excitations.A periodic approximate transformation is employed to convert the equations of the motion to a con-tinuous form.The probabilistic description of the system is subsequently defined through the corresponding Fokker-Planck-Kolmogorov(FPK)equation.The closed-form station-ary probability density function(PDF)of the response is obtained by solving the reduced FPK equation and using the proposed iterative method of weighted residue together with the concepts of the circulatory probability flow and the potential probability flow.Finally,the versatility of the proposed approach is demonstrated by its application to two typical examples.Note that the solution obtained by using the proposed method can be used as the benchmark to examine the accuracy of approximate solutions obtained by other methods.