The paper presents an active control system that counteracts the development of chatter vibration. The vibration amplitude depends on the dynamic properties of the machine tool, cutting tool and work-piece. In the pap...The paper presents an active control system that counteracts the development of chatter vibration. The vibration amplitude depends on the dynamic properties of the machine tool, cutting tool and work-piece. In the paper we analyze the case when the loss of machining stability is caused by the work-piece. The proposed active control system employs electromagnet or piezoelectric actuator to suppress vibration during milling. The active control introduces damping into the system, thereby raising the critical depth of cut and reducing forced vibration amplitude. It enables stable cutting under a much wider range of cutting parameters that for the uncontrolled system. Cutting tests are performed on JAFO FYN-50 machine with mill DIN 845 B-25 K-N HSS to demonstrate an effectiveness of the proposed systems.展开更多
文摘The paper presents an active control system that counteracts the development of chatter vibration. The vibration amplitude depends on the dynamic properties of the machine tool, cutting tool and work-piece. In the paper we analyze the case when the loss of machining stability is caused by the work-piece. The proposed active control system employs electromagnet or piezoelectric actuator to suppress vibration during milling. The active control introduces damping into the system, thereby raising the critical depth of cut and reducing forced vibration amplitude. It enables stable cutting under a much wider range of cutting parameters that for the uncontrolled system. Cutting tests are performed on JAFO FYN-50 machine with mill DIN 845 B-25 K-N HSS to demonstrate an effectiveness of the proposed systems.