A new improved Goh's 3 D wavelet transform(WT) coding scheme is presented in this paper. The new scheme has great advantages including a simple code structure, low computation cost and good performance in PSNR, c...A new improved Goh's 3 D wavelet transform(WT) coding scheme is presented in this paper. The new scheme has great advantages including a simple code structure, low computation cost and good performance in PSNR, compression ratios and visual quality of reconstructions, when compared to the other existing 3 D WT coding methods and the 2 D WT based coding methods. The new 3 D WT coding scheme is suitable for very low bit rate video coding.展开更多
A new motion compensated 3 D wavelet transform (MC 3DWT) video coding scheme is presented in this paper. The new coding scheme has a good performance in average PSNR, compression ratio and visual quality of reconst...A new motion compensated 3 D wavelet transform (MC 3DWT) video coding scheme is presented in this paper. The new coding scheme has a good performance in average PSNR, compression ratio and visual quality of reconstructions compared with the existing 3 D wavelet transform (3DWT) coding methods and motion compensated 2 D wavelet transform (MC WT) coding method. The new MC 3DWT coding scheme is suitable for very low bit rate video coding.展开更多
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is a...In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.展开更多
Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process o...Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process of video data provides secure and less consumption of storage and the reconstruction process consists of the reverse process with the extraction. In this paper, the coding of video is carried out at a very low bit rate with the enhancement of performance by proposing an approach of modified Set Partitioning in Hierarchical Tree (MSPIHT). This method encodes the high frequency frames with the scheduling of wavelet transform for efficient performances of encoding and improves the ability of both the frequency and time. By applying empirical wavelet transform on each video frame, the component of video frequency is extracted and the low frequency frame is encoded by the H.264/AVC standard. The low coefficient values are ignored in applying the threshold and in the reconstruction process, HBLPCE method is used for imaging enhancement. The simulation of the proposed approach analysis shows better performance in reliable process and efficiency when compared to existing.展开更多
This paper presents a new video coding system based on wavelet transform and its rate control scheme over ATM networks. First, three dimensional wavelet transform is performed for the original image sequence, and an e...This paper presents a new video coding system based on wavelet transform and its rate control scheme over ATM networks. First, three dimensional wavelet transform is performed for the original image sequence, and an extension of set partitioning in hierarchical trees algorithm is employed to quantize the wavelet coefficients. Then, the output rate of the coder is controlled at group of frame scale, ensuring that it conforms to the parameters of a leaky bucket controller. Several leaky buckets with different sizes are discussed too. Simulation shows the efficiency of this codec and the effectiveness of the proposed rate control scheme.展开更多
This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized ...This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.展开更多
Two video coding schemes based on wavelet transform achieving very low bit rate are presented in this paper. The first is a hybrid motion compensated wavelet transform(MC WT)system which behaves better at very low ...Two video coding schemes based on wavelet transform achieving very low bit rate are presented in this paper. The first is a hybrid motion compensated wavelet transform(MC WT)system which behaves better at very low bit rates than the block DCT residual coder. The second is a new efficient coding system based on a simple frame differencing wavelet transform(FD WT)which performs well in both PSNR and visual quality with substantially reduced complexity.展开更多
This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. Af...This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.展开更多
A novel scheme for scalable video coding using three-band lifting-based motion-compensated transform is presented in this article. A series of flexible three-band motion-compensated lifting steps are used to implement...A novel scheme for scalable video coding using three-band lifting-based motion-compensated transform is presented in this article. A series of flexible three-band motion-compensated lifting steps are used to implement the temporal wavelet transform, which provide improved compression performance by selecting specific motion model according to real video sequences, and offer higher temporal scalability flexibility by using three-band lifting steps. The experimental results compared with motion picture expert group (MPEG)-4 codec concerning standard video sequences demonstrate the effectiveness of the method.展开更多
Wavelet transform is being widely used in the field of information processing.One-dimension and two-dimension quantum wavelet transforms have been investigated as important tool algorithms.However,three-dimensional qu...Wavelet transform is being widely used in the field of information processing.One-dimension and two-dimension quantum wavelet transforms have been investigated as important tool algorithms.However,three-dimensional quantum wavelet transforms have not been reported.This paper proposes a multi-level three-dimensional quantum wavelet transform theory to implement the wavelet transform for quantum videos.Then,we construct the iterative formulas for the multi-level three-dimensional Haar and Daubechies D4 quantum wavelet transforms,respectively.Next,we design quantum circuits of the two wavelet transforms using iterative methods.Complexity analysis shows that the proposed wavelet transforms offer exponential speed-up over their classical counterparts.Finally,the proposed quantum wavelet transforms are selected to realize quantum video compression as a primary application.Simulation results reveal that the proposed wavelet transforms have better compression performance for quantum videos than two-dimension quantum wavelet transforms.展开更多
文摘A new improved Goh's 3 D wavelet transform(WT) coding scheme is presented in this paper. The new scheme has great advantages including a simple code structure, low computation cost and good performance in PSNR, compression ratios and visual quality of reconstructions, when compared to the other existing 3 D WT coding methods and the 2 D WT based coding methods. The new 3 D WT coding scheme is suitable for very low bit rate video coding.
文摘A new motion compensated 3 D wavelet transform (MC 3DWT) video coding scheme is presented in this paper. The new coding scheme has a good performance in average PSNR, compression ratio and visual quality of reconstructions compared with the existing 3 D wavelet transform (3DWT) coding methods and motion compensated 2 D wavelet transform (MC WT) coding method. The new MC 3DWT coding scheme is suitable for very low bit rate video coding.
文摘In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.
文摘Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process of video data provides secure and less consumption of storage and the reconstruction process consists of the reverse process with the extraction. In this paper, the coding of video is carried out at a very low bit rate with the enhancement of performance by proposing an approach of modified Set Partitioning in Hierarchical Tree (MSPIHT). This method encodes the high frequency frames with the scheduling of wavelet transform for efficient performances of encoding and improves the ability of both the frequency and time. By applying empirical wavelet transform on each video frame, the component of video frequency is extracted and the low frequency frame is encoded by the H.264/AVC standard. The low coefficient values are ignored in applying the threshold and in the reconstruction process, HBLPCE method is used for imaging enhancement. The simulation of the proposed approach analysis shows better performance in reliable process and efficiency when compared to existing.
文摘This paper presents a new video coding system based on wavelet transform and its rate control scheme over ATM networks. First, three dimensional wavelet transform is performed for the original image sequence, and an extension of set partitioning in hierarchical trees algorithm is employed to quantize the wavelet coefficients. Then, the output rate of the coder is controlled at group of frame scale, ensuring that it conforms to the parameters of a leaky bucket controller. Several leaky buckets with different sizes are discussed too. Simulation shows the efficiency of this codec and the effectiveness of the proposed rate control scheme.
文摘This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.
文摘Two video coding schemes based on wavelet transform achieving very low bit rate are presented in this paper. The first is a hybrid motion compensated wavelet transform(MC WT)system which behaves better at very low bit rates than the block DCT residual coder. The second is a new efficient coding system based on a simple frame differencing wavelet transform(FD WT)which performs well in both PSNR and visual quality with substantially reduced complexity.
文摘This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.
基金supported by the National Natural Science Foundation of China (60672132).
文摘A novel scheme for scalable video coding using three-band lifting-based motion-compensated transform is presented in this article. A series of flexible three-band motion-compensated lifting steps are used to implement the temporal wavelet transform, which provide improved compression performance by selecting specific motion model according to real video sequences, and offer higher temporal scalability flexibility by using three-band lifting steps. The experimental results compared with motion picture expert group (MPEG)-4 codec concerning standard video sequences demonstrate the effectiveness of the method.
基金supported by the Science and Technology Project of Guangxi(2020GXNSFDA238023)the National Natural Science Foundation of China(Grant No.61762012).
文摘Wavelet transform is being widely used in the field of information processing.One-dimension and two-dimension quantum wavelet transforms have been investigated as important tool algorithms.However,three-dimensional quantum wavelet transforms have not been reported.This paper proposes a multi-level three-dimensional quantum wavelet transform theory to implement the wavelet transform for quantum videos.Then,we construct the iterative formulas for the multi-level three-dimensional Haar and Daubechies D4 quantum wavelet transforms,respectively.Next,we design quantum circuits of the two wavelet transforms using iterative methods.Complexity analysis shows that the proposed wavelet transforms offer exponential speed-up over their classical counterparts.Finally,the proposed quantum wavelet transforms are selected to realize quantum video compression as a primary application.Simulation results reveal that the proposed wavelet transforms have better compression performance for quantum videos than two-dimension quantum wavelet transforms.