In this paper an effective MC + FGSST structure is explored, which is appropriate for scalable video coding. The structure obtains spatio-temporal-SNR fine granular scalability, and achieves high coding efficiency at...In this paper an effective MC + FGSST structure is explored, which is appropriate for scalable video coding. The structure obtains spatio-temporal-SNR fine granular scalability, and achieves high coding efficiency at the same time. Users can acquire their necessary scalability by choosing and combining them. Then, a high-powered codec solution based on this structure is presented. Subsequently, a focus issue on the right number of bit-planes should be used for motion compensation is discussed, and an algorithm is presented for this issue. The proposed codec saves a lot of hardware expense. Simulation results indicate that the performance of MC + FGSST structure is superior to that of FGSST structure.展开更多
MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with...MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.展开更多
An improved FGS (Fine Granular Scalability) coding method is proposed in this letter, which is based on human visual characteristics. This method adjusts FGS coding frame rate according to the evaluation of video sequ...An improved FGS (Fine Granular Scalability) coding method is proposed in this letter, which is based on human visual characteristics. This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images. Finally, a fine granular joint source channel coding is proposed based on the source coding method, which not only utilizes the network resources efficiently, but guarantees the reliable transmission of video information.展开更多
A simple, efficient multiple description coding (MDC) algorithm was developed based on weighted signal combinations. The scheme uses the standard video encoder with a pre-processing stage to generate multiple descri...A simple, efficient multiple description coding (MDC) algorithm was developed based on weighted signal combinations. The scheme uses the standard video encoder with a pre-processing stage to generate multiple descriptions. The decoder then uses a post-processing algorithm to combine the descriptions to provide better image quality. A scalable codec in the MDC system allows the system to provide multiple descriptions and scalability at the same time. In addition, since the different scalable descriptions may have different qualities, a simple averaging process is not optimal. An optimal weighted combination of the two descriptions was developed based on the signal to noise ratios. Compared with the simple average combination, the algorithm significantly improved the video quality, especially with large quality differences between the two descriptions, with gains of up to 3.56 dB.展开更多
A new rate allocation method for fine-granular scalability (FGS) coded bitstreams is presented in order to achieve smooth quality reconstruction of frames under channel conditions with a wide range of bandwidth variat...A new rate allocation method for fine-granular scalability (FGS) coded bitstreams is presented in order to achieve smooth quality reconstruction of frames under channel conditions with a wide range of bandwidth variation and improve the average PSNR of the whole sequence. Based on a quality weighted bit allocation method, a sliding window rate allocation method is proposed for the first time so that the window can slide along the video sequence with a certain sliding step. Experimental results show that, under dynamic bandwidth conditions, the proposed method can simultaneously satisfy the requirements for improving average PSNR of the whole video sequence greatly and reducing the fluctuations between adjacent frames greatly.展开更多
In this paper, we propose a novel optimal quality adaptation algorithm for MPEG-4 fine granular scalability (FGS)stream over wired network. Our algorithm can maximize perceptual video quality by minimizing video quali...In this paper, we propose a novel optimal quality adaptation algorithm for MPEG-4 fine granular scalability (FGS)stream over wired network. Our algorithm can maximize perceptual video quality by minimizing video quality variation and increasing available bandwidth usage rate. Under the condition that the whole bandwidth evolution is known, we design an optimal algorithm to select layer. When the knowledge of future bandwidth is not available, we also develop an online algorithm based on the optimal algorithm. Simulation showed that both optimal algorithm and online algorithm can offer smoothed video quality evolution.展开更多
基金Project supported by Key Disciplinary Development Program of Shanghai (Grant No. 2001 -44 ), and Science Foundation of Shanghai Municipal Commission of Education (Grant No. 03AQ86)
文摘In this paper an effective MC + FGSST structure is explored, which is appropriate for scalable video coding. The structure obtains spatio-temporal-SNR fine granular scalability, and achieves high coding efficiency at the same time. Users can acquire their necessary scalability by choosing and combining them. Then, a high-powered codec solution based on this structure is presented. Subsequently, a focus issue on the right number of bit-planes should be used for motion compensation is discussed, and an algorithm is presented for this issue. The proposed codec saves a lot of hardware expense. Simulation results indicate that the performance of MC + FGSST structure is superior to that of FGSST structure.
文摘MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.
基金Supported by National Natural Science Foundation of China (No.90104013) and 863 project(2001AA121061)
文摘An improved FGS (Fine Granular Scalability) coding method is proposed in this letter, which is based on human visual characteristics. This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images. Finally, a fine granular joint source channel coding is proposed based on the source coding method, which not only utilizes the network resources efficiently, but guarantees the reliable transmission of video information.
基金the National Natural Science Foundation of China (No. 60572081)
文摘A simple, efficient multiple description coding (MDC) algorithm was developed based on weighted signal combinations. The scheme uses the standard video encoder with a pre-processing stage to generate multiple descriptions. The decoder then uses a post-processing algorithm to combine the descriptions to provide better image quality. A scalable codec in the MDC system allows the system to provide multiple descriptions and scalability at the same time. In addition, since the different scalable descriptions may have different qualities, a simple averaging process is not optimal. An optimal weighted combination of the two descriptions was developed based on the signal to noise ratios. Compared with the simple average combination, the algorithm significantly improved the video quality, especially with large quality differences between the two descriptions, with gains of up to 3.56 dB.
文摘A new rate allocation method for fine-granular scalability (FGS) coded bitstreams is presented in order to achieve smooth quality reconstruction of frames under channel conditions with a wide range of bandwidth variation and improve the average PSNR of the whole sequence. Based on a quality weighted bit allocation method, a sliding window rate allocation method is proposed for the first time so that the window can slide along the video sequence with a certain sliding step. Experimental results show that, under dynamic bandwidth conditions, the proposed method can simultaneously satisfy the requirements for improving average PSNR of the whole video sequence greatly and reducing the fluctuations between adjacent frames greatly.
基金Project supported by the National Natural Science Foundation of China (No. 60432030) and the NatIonal Science Fund for Distinguished Young Scholars (No. 60525111), China
文摘In this paper, we propose a novel optimal quality adaptation algorithm for MPEG-4 fine granular scalability (FGS)stream over wired network. Our algorithm can maximize perceptual video quality by minimizing video quality variation and increasing available bandwidth usage rate. Under the condition that the whole bandwidth evolution is known, we design an optimal algorithm to select layer. When the knowledge of future bandwidth is not available, we also develop an online algorithm based on the optimal algorithm. Simulation showed that both optimal algorithm and online algorithm can offer smoothed video quality evolution.