In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.Fir...In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.First,the overall structure of the proposed video compressed sensing algorithm is introduced in this paper.The paper adopts a multi-reference frame bidirectional prediction hypothesis optimization algorithm.Then,the paper proposes a reconstruction method for CS frames at the re-decoding end.In addition to using key frames of each GOP reconstructed in the time domain as reference frames for reconstructing CS frames,half-pixel reference frames and scaled reference frames in the pixel domain are also used as CS frames.Reference frames of CS frames are used to obtain higher quality assumptions.Themethod of obtaining reference frames in the pixel domain is also discussed in detail in this paper.Finally,the reconstruction algorithm proposed in this paper is compared with video compression algorithms in the literature that have better reconstruction results.Experiments show that the algorithm has better performance than the best multi-reference frame video compression sensing algorithm and can effectively improve the quality of slowmotion video reconstruction.展开更多
文摘In this paper,a video compressed sensing reconstruction algorithm based on multidimensional reference frames is proposed using the sparse characteristics of video signals in different sparse representation domains.First,the overall structure of the proposed video compressed sensing algorithm is introduced in this paper.The paper adopts a multi-reference frame bidirectional prediction hypothesis optimization algorithm.Then,the paper proposes a reconstruction method for CS frames at the re-decoding end.In addition to using key frames of each GOP reconstructed in the time domain as reference frames for reconstructing CS frames,half-pixel reference frames and scaled reference frames in the pixel domain are also used as CS frames.Reference frames of CS frames are used to obtain higher quality assumptions.Themethod of obtaining reference frames in the pixel domain is also discussed in detail in this paper.Finally,the reconstruction algorithm proposed in this paper is compared with video compression algorithms in the literature that have better reconstruction results.Experiments show that the algorithm has better performance than the best multi-reference frame video compression sensing algorithm and can effectively improve the quality of slowmotion video reconstruction.