Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ...Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.展开更多
Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its ...Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its existence and development are also of great significance to the diversified development of world culture.Based on Stuart Hall’s encoding/decoding theory,this paper analyzes the problems in the spreading of Chinese tea in and out of the country and provides solutions from the perspective of encoding,communication,and decoding.It is expected to provide a reference for the domestic and international dissemination of Chinese tea culture.展开更多
The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can he...The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can help to evoke cultural memories and cultural identification of the Canal and build cultural confidence.This paper applies Stuart Hall’s encoding/decoding theory to analyze the dissemination of intangible heritage tourism culture.On the basis of a practical study of the villages along the Beijing-Hangzhou Grand Canal,this paper analyses the problems in the transmission of its intangible cultural heritage and proposes specific methods to solve them in four processes,encoding,decoding,communication,and secondary encoding,in order to propose references for the transmission of intangible heritage culture at home and abroad.展开更多
The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are i...The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.展开更多
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and...Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.展开更多
In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many br...In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.展开更多
Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively a...Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal ...In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitabl...Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitably.Available algorithms are specially designed for certain modulation scheme;these algorithms cannot satisfy the requirement of soft-defined radio,which perhaps demands a uniform algorithm for different modulations.This paper proposes a new opinion on phase ambiguity from the view of probability.This opinion believes that modulating symbol sequence can affect,at optimum sampling epoch,the modulated waveform as oscillating carrier has done,and so the stochastic sequence leads to phase ambiguity.Based on a general signal model,this paper also puts forward a novel universal algorithm,which is suitable for different signals,even some new ones,by configuring several parameters.展开更多
In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Bas...In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.展开更多
x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit...x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.展开更多
In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is de...In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61931020,U19B2024,62171449,62001483in part by the science and technology innovation Program of Hunan Province under Grant No.2021JJ40690。
文摘Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels.
文摘Tea has a history of thousands of years in China and it plays an important role in the working-life and daily life of people.Tea culture rich in connotation is an important part of Chinese traditional culture,and its existence and development are also of great significance to the diversified development of world culture.Based on Stuart Hall’s encoding/decoding theory,this paper analyzes the problems in the spreading of Chinese tea in and out of the country and provides solutions from the perspective of encoding,communication,and decoding.It is expected to provide a reference for the domestic and international dissemination of Chinese tea culture.
基金supported by the National Social Science Fund Project (No.20BH151).
文摘The Beijing-Hangzhou Grand Canal carries a wealth of Chinese cultural symbols,showing the lifestyle and wisdom of working people through ages.The preservation and inheritance of its intangible cultural heritage can help to evoke cultural memories and cultural identification of the Canal and build cultural confidence.This paper applies Stuart Hall’s encoding/decoding theory to analyze the dissemination of intangible heritage tourism culture.On the basis of a practical study of the villages along the Beijing-Hangzhou Grand Canal,this paper analyses the problems in the transmission of its intangible cultural heritage and proposes specific methods to solve them in four processes,encoding,decoding,communication,and secondary encoding,in order to propose references for the transmission of intangible heritage culture at home and abroad.
文摘The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.
基金This work was supported by the National Key Research and Development Program of China(2018YFC2001302)National Natural Science Foundation of China(91520202)+2 种基金Chinese Academy of Sciences Scientific Equipment Development Project(YJKYYQ20170050)Beijing Municipal Science and Technology Commission(Z181100008918010)Youth Innovation Promotion Association of Chinese Academy of Sciences,and Strategic Priority Research Program of Chinese Academy of Sciences(XDB32040200).
文摘Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.
基金supported in part by the Royal Society of the UK,the Nationa Natural Science,Foundation of China(61329301,61374039)the Program for Capability Construction of Shanghai Provincial Universities(15550502500)the Alexander von Humboldt Foundation of Germany
文摘In order to make the information transmission more efficient and reliable in a digital communication channel with limited capacity, various encoding-decoding techniques have been proposed and widely applied in many branches of the signal processing including digital communications, data compression,information encryption, etc. Recently, due to its promising application potentials in the networked systems(NSs), the analysis and synthesis issues of the NSs under various encoding-decoding schemes have stirred some research attention. However, because of the network-enhanced complexity caused by the limited network resources, it poses new challenges to the design of suitable encoding-decoding procedures to meet certain control or filtering performance for the NSs. In this survey paper, our aim is to present a comprehensive review of the encoding-decodingbased control and filtering problems for different types of NSs.First, some basic introduction with respect to the coding-decoding mechanism is presented in terms of its engineering insights,specific properties and theoretical formulations. Then, the recent representative research progress in the design of the encodingdecoding protocols for various control and filtering problems is discussed. Some possible further research topics are finally outlined for the encoding-decoding-based NSs.
基金supported by the Jilin Science and Technology Development Plan Project (Nos. 20160209006GX, 20170309001GX and 20180201043GX)
文摘Ocean underwater exploration is a part of oceanography that investigates the physical and biological conditions for scientific and commercial purposes. And video technology plays an important role and is extensively applied for underwater environment observation. Different from the conventional methods, video technology explores the underwater ecosystem continuously and non-invasively. However, due to the scattering and attenuation of light transport in the water, complex noise distribution and lowlight condition cause challenges for underwater video applications including object detection and recognition. In this paper, we propose a new deep encoding-decoding convolutional architecture for underwater object recognition. It uses the deep encoding-decoding network for extracting the discriminative features from the noisy low-light underwater images. To create the deconvolutional layers for classification, we apply the deconvolution kernel with a matched feature map, instead of full connection, to solve the problem of dimension disaster and low accuracy. Moreover, we introduce data augmentation and transfer learning technologies to solve the problem of data starvation. For experiments, we investigated the public datasets with our proposed method and the state-of-the-art methods. The results show that our work achieves significant accuracy. This work provides new underwater technologies applied for ocean exploration.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572080), Shanghai Rising-Star Program (Grant No.05QMX1422), and Dawn Project of the Science Foundation of Shanghai Municipal Commission of Education (Grant No.05SG41 04YQHB089)
文摘In this paper, based on an adaptive chaos synchronization scheme, two methods of encoding-decoding message for secure communication are proposed. With the first method, message is directly added to the chaotic signal with parameter uncertainty. In the second method, multi-parameter modulation is used to simultaneously transmit more than one digital message (i.e., the multichannel digital communication) through just a single signal, which switches among various chaotic attractors that differ only subtly. In theory, such a treatment increases the difficulty for the intruder to directly intercept the information, and meanwhile the implementation cost decreases significantly. In addition, numerical results show the methods are robust against weak noise, which implies their practicability.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.
基金Supported by Henan Prominent Talents Innovation Foundation (No.0421000100).
文摘Many monographs point out that differential encoding and decoding is necessary for ef- fectual information transmission against phase ambiguity while seldom discuss the reason why phase ambiguity will emerge inevitably.Available algorithms are specially designed for certain modulation scheme;these algorithms cannot satisfy the requirement of soft-defined radio,which perhaps demands a uniform algorithm for different modulations.This paper proposes a new opinion on phase ambiguity from the view of probability.This opinion believes that modulating symbol sequence can affect,at optimum sampling epoch,the modulated waveform as oscillating carrier has done,and so the stochastic sequence leads to phase ambiguity.Based on a general signal model,this paper also puts forward a novel universal algorithm,which is suitable for different signals,even some new ones,by configuring several parameters.
文摘In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.
文摘x264 video codec uses lots of new video encoding technology based on H.264/AVC video encoding standard which enhances compression efficiency. However this results in so heavy computation that the x264 codec is not fit for real-time encoding application of high resolution video. This paper analyses the character of aerial video and then opti-mizes the inter-frame mode decision and motion estimation in x264 codec according to its character by reducing a lot of unnecessary computation. In the result, about 19% computation and encoding time is reduced with total bits and PSNR decreasing lightly.
基金supported in part by the National Natural Science Foundation of China under Grant 61873277in part by the Natural Science Basic Research Plan in Shaanxi Province of China underGrant 2020JQ-758in part by the Chinese Postdoctoral Science Foundation under Grant 2020M673446.
文摘In the video captioning methods based on an encoder-decoder,limited visual features are extracted by an encoder,and a natural sentence of the video content is generated using a decoder.However,this kind ofmethod is dependent on a single video input source and few visual labels,and there is a problem with semantic alignment between video contents and generated natural sentences,which are not suitable for accurately comprehending and describing the video contents.To address this issue,this paper proposes a video captioning method by semantic topic-guided generation.First,a 3D convolutional neural network is utilized to extract the spatiotemporal features of videos during the encoding.Then,the semantic topics of video data are extracted using the visual labels retrieved from similar video data.In the decoding,a decoder is constructed by combining a novel Enhance-TopK sampling algorithm with a Generative Pre-trained Transformer-2 deep neural network,which decreases the influence of“deviation”in the semantic mapping process between videos and texts by jointly decoding a baseline and semantic topics of video contents.During this process,the designed Enhance-TopK sampling algorithm can alleviate a long-tail problem by dynamically adjusting the probability distribution of the predicted words.Finally,the experiments are conducted on two publicly used Microsoft Research Video Description andMicrosoft Research-Video to Text datasets.The experimental results demonstrate that the proposed method outperforms several state-of-art approaches.Specifically,the performance indicators Bilingual Evaluation Understudy,Metric for Evaluation of Translation with Explicit Ordering,Recall Oriented Understudy for Gisting Evaluation-longest common subsequence,and Consensus-based Image Description Evaluation of the proposed method are improved by 1.2%,0.1%,0.3%,and 2.4% on the Microsoft Research Video Description dataset,and 0.1%,1.0%,0.1%,and 2.8% on the Microsoft Research-Video to Text dataset,respectively,compared with the existing video captioning methods.As a result,the proposed method can generate video captioning that is more closely aligned with human natural language expression habits.