A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequenc...A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.展开更多
We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the fo...We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.展开更多
为了有效抑制 H.264/AVC压缩视频流的传输错误扩散,提出一种基于率失真优化的 H.264参考帧选择算法。该算法针对 H .264/AVC中的多种预测模式,在像素级准确估计了差错环境下的视频传输失真,并将该失真模型与率失真优化准则结合,...为了有效抑制 H.264/AVC压缩视频流的传输错误扩散,提出一种基于率失真优化的 H.264参考帧选择算法。该算法针对 H .264/AVC中的多种预测模式,在像素级准确估计了差错环境下的视频传输失真,并将该失真模型与率失真优化准则结合,在率失真框架内选择最合适的参考帧,使解码段的失真度达到最小。实验结果表明,改进算法相比传统的预测编码方法PSNR值大约提高了1~2dB,能有效改善 H.264视频传输的抗差错性能。展开更多
文摘A two-stage automatic key frame selection method is proposed to enhance stitching speed and quality for UAV aerial videos. In the first stage, to reduce redundancy, the overlapping rate of the UAV aerial video sequence within the sampling period is calculated. Lagrange interpolation is used to fit the overlapping rate curve of the sequence. An empirical threshold for the overlapping rate is then applied to filter candidate key frames from the sequence. In the second stage, the principle of minimizing remapping spots is used to dynamically adjust and determine the final key frame close to the candidate key frames. Comparative experiments show that the proposed method significantly improves stitching speed and accuracy by more than 40%.
基金Project (No. STE1093/1-1) supported by the German ResearchFoundation, Germany
文摘We propose a Rate-Distortion (RD) optimized strategy for frame-dropping and scheduling of multi-user conversa- tional and streaming videos. We consider a scenario where conversational and streaming videos share the forwarding resources at a network node. Two buffers are setup on the node to temporarily store the packets for these two types of video applications. For streaming video, a big buffer is used as the associated delay constraint of the application is moderate and a very small buffer is used for conversational video to ensure that the forwarding delay of every packet is limited. A scheduler is located behind these two buffers that dynamically assigns transmission slots on the outgoing link to the two buffers. Rate-distortion side information is used to perform RD-optimized frame dropping in case of node overload. Sharing the data rate on the outgoing link between the con- versational and the streaming videos is done either based on the fullness of the two associated buffers or on the mean incoming rates of the respective videos. Simulation results showed that our proposed RD-optimized frame dropping and scheduling ap- proach provides significant improvements in performance over the popular priority-based random dropping (PRD) technique.