期刊文献+
共找到1,152篇文章
< 1 2 58 >
每页显示 20 50 100
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
1
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
SwinVid:Enhancing Video Object Detection Using Swin Transformer
2
作者 Abdelrahman Maharek Amr Abozeid +1 位作者 Rasha Orban Kamal ElDahshan 《Computer Systems Science & Engineering》 2024年第2期305-320,共16页
What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reas... What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reasons have made video object detection(VID)a growing area of research in recent years.Video object detection can be used for various healthcare applications,such as detecting and tracking tumors in medical imaging,monitoring the movement of patients in hospitals and long-term care facilities,and analyzing videos of surgeries to improve technique and training.Additionally,it can be used in telemedicine to help diagnose and monitor patients remotely.Existing VID techniques are based on recurrent neural networks or optical flow for feature aggregation to produce reliable features which can be used for detection.Some of those methods aggregate features on the full-sequence level or from nearby frames.To create feature maps,existing VID techniques frequently use Convolutional Neural Networks(CNNs)as the backbone network.On the other hand,Vision Transformers have outperformed CNNs in various vision tasks,including object detection in still images and image classification.We propose in this research to use Swin-Transformer,a state-of-the-art Vision Transformer,as an alternative to CNN-based backbone networks for object detection in videos.The proposed architecture enhances the accuracy of existing VID methods.The ImageNet VID and EPIC KITCHENS datasets are used to evaluate the suggested methodology.We have demonstrated that our proposed method is efficient by achieving 84.3%mean average precision(mAP)on ImageNet VID using less memory in comparison to other leading VID techniques.The source code is available on the website https://github.com/amaharek/SwinVid. 展开更多
关键词 video object detection vision transformers convolutional neural networks deep learning
下载PDF
Motion connectivity-based initial video object extraction
3
作者 王煜坚 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期500-506,共7页
In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly conne... In order to obtain the initial video objects from the video sequences, an improved initial video object extraction algorithm based on motion connectivity is proposed. Moving objects in video sequences are highly connected and structured, which makes motion connectivity an advanced feature for segmentation. Accordingly, after sharp noise elimination, the cumulated difference image, which exhibits the coherent motion of the moving object, is adaptively thresholded. Then the maximal connected region is labeled, post-processed and output as the final segmenting mask. Hence the initial video object is effectively extracted. Comparative experimental results show that the proposed algorithm extracts the initial video object automatically, promptly and properly, thereby achieving satisfactory subjective and objective performance. 展开更多
关键词 video object extraction motion connectivity adaptive threshold cumulated difference image
下载PDF
Real-time moving object detection for video monitoring systems 被引量:18
4
作者 Wei Zhiqiang Ji Xiaopeng Wang Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期731-736,共6页
Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew back... Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. Amethod for real-time moving object detection is described. Anew background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving obj ects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video mum'toting systems. 展开更多
关键词 video monitoring system moving object detection background subtraction background model shadow elimination.
下载PDF
Scribble-Supervised Video Object Segmentation 被引量:3
5
作者 Peiliang Huang Junwei Han +2 位作者 Nian Liu Jun Ren Dingwen Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期339-353,共15页
Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to ... Recently,video object segmentation has received great attention in the computer vision community.Most of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to obtain.To tackle this problem,we make an early attempt to achieve video object segmentation with scribble-level supervision,which can alleviate large amounts of human labor for collecting the manual annotation.However,using conventional network architectures and learning objective functions under this scenario cannot work well as the supervision information is highly sparse and incomplete.To address this issue,this paper introduces two novel elements to learn the video object segmentation model.The first one is the scribble attention module,which captures more accurate context information and learns an effective attention map to enhance the contrast between foreground and background.The other one is the scribble-supervised loss,which can optimize the unlabeled pixels and dynamically correct inaccurate segmented areas during the training stage.To evaluate the proposed method,we implement experiments on two video object segmentation benchmark datasets,You Tube-video object segmentation(VOS),and densely annotated video segmentation(DAVIS)-2017.We first generate the scribble annotations from the original per-pixel annotations.Then,we train our model and compare its test performance with the baseline models and other existing works.Extensive experiments demonstrate that the proposed method can work effectively and approach to the methods requiring the dense per-pixel annotations. 展开更多
关键词 Convolutional neural networks(CNNs) SCRIBBLE self-attention video object segmentation weakly supervised
下载PDF
Objective Performance Evaluation of Video Segmentation Algorithms with Ground-Truth 被引量:1
6
作者 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2004年第1期70-74,共5页
While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In t... While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation. Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy. Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames. The experimental results show the feasibility of our approach. Moreover, it is computationally more efficient than previous methods. It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm. 展开更多
关键词 video object segmentation performance evaluation MPEG-4.
下载PDF
Algorithm Research on Moving Object Detection of Surveillance Video Sequence 被引量:2
7
作者 Kuihe Yang Zhiming Cai Lingling Zhao 《Optics and Photonics Journal》 2013年第2期308-312,共5页
In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysi... In video surveillance, there are many interference factors such as target changes, complex scenes, and target deformation in the moving object tracking. In order to resolve this issue, based on the comparative analysis of several common moving object detection methods, a moving object detection and recognition algorithm combined frame difference with background subtraction is presented in this paper. In the algorithm, we first calculate the average of the values of the gray of the continuous multi-frame image in the dynamic image, and then get background image obtained by the statistical average of the continuous image sequence, that is, the continuous interception of the N-frame images are summed, and find the average. In this case, weight of object information has been increasing, and also restrains the static background. Eventually the motion detection image contains both the target contour and more target information of the target contour point from the background image, so as to achieve separating the moving target from the image. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 video SURVEILLANCE MOVING object Detection FRAME DIFFERENCE BACKGROUND SUBTRACTION
下载PDF
Realtime Object Detection Through M-ResNet in Video Surveillance System 被引量:1
8
作者 S.Prabu J.M.Gnanasekar 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2257-2271,共15页
Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.Ho... Object detection plays a vital role in the video surveillance systems.To enhance security,surveillance cameras are now installed in public areas such as traffic signals,roadways,retail malls,train stations,and banks.However,monitor-ing the video continually at a quicker pace is a challenging job.As a consequence,security cameras are useless and need human monitoring.The primary difficulty with video surveillance is identifying abnormalities such as thefts,accidents,crimes,or other unlawful actions.The anomalous action does not occur at a high-er rate than usual occurrences.To detect the object in a video,first we analyze the images pixel by pixel.In digital image processing,segmentation is the process of segregating the individual image parts into pixels.The performance of segmenta-tion is affected by irregular illumination and/or low illumination.These factors highly affect the real-time object detection process in the video surveillance sys-tem.In this paper,a modified ResNet model(M-Resnet)is proposed to enhance the image which is affected by insufficient light.Experimental results provide the comparison of existing method output and modification architecture of the ResNet model shows the considerable amount improvement in detection objects in the video stream.The proposed model shows better results in the metrics like preci-sion,recall,pixel accuracy,etc.,andfinds a reasonable improvement in the object detection. 展开更多
关键词 object detection ResNet video survilence image processing object quality
下载PDF
Real-time detection of moving objects in video sequences
9
作者 宋红 石峰 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期687-691,共5页
An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame dif... An approach to detection of moving objects in video sequences, with application to video surveillance is presented. The algorithm combines two kinds of change points, which are detected from the region-based frame difference and adjusted background subtraction. An adaptive threshold technique is employed to automatically choose the threshold value to segment the moving objects from the still background. And experiment results show that the algorithm is effective and efficient in practical situations. Furthermore, the algorithm is robust to the effects of the changing of lighting condition and can be applied for video surveillance system. 展开更多
关键词 object detection video surveillance region-based frame difference adjusted background subtraction.
下载PDF
Initial Object Segmentation for Video Object Plane Generation Using Cellular Neural Networks
10
作者 王慧 杨高波 张兆扬 《Journal of Shanghai University(English Edition)》 CAS 2003年第2期168-172,共5页
MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial obj... MPEG 4 is a basic tool for interactivity and manipulation of video sequences. Video object segmentation is a key issue in defining the content of any video sequence, which is often divided into two steps: initial object segmentation and object tracking. In this paper, an initial object segmentation method for video object plane(VOP) generation using color information is proposed. Based on 3 by 3 linear templates, a cellular neural network (CNN) is used to implemented object segmentation. The Experimental results are presented to verify the efficiency and robustness of this approach. 展开更多
关键词 video object plane(VOP) cellular neural networks(CNN) templates.
下载PDF
Research on video motion object segmentation for content-based application
11
作者 包红强 ZHANG Zhao- yang +4 位作者 YU Song-yu WANG Suo-zhong WANG Nu-li FANG Yong WANG Zhi-gang 《Journal of Shanghai University(English Edition)》 CAS 2006年第2期142-143,共2页
With the development of the modern information society, more and more multimedia information is available. So the technology of multimedia processing is becoming the important task for the irrelevant area of scientist... With the development of the modern information society, more and more multimedia information is available. So the technology of multimedia processing is becoming the important task for the irrelevant area of scientist. Among of the multimedia, the visual informarion is more attractive due to its direct, vivid characteristic, but at the same rime the huge amount of video data causes many challenges if the video storage, processing and transmission. 展开更多
关键词 image processing video object segmentation spatiotemporal framework MPEG-4.
下载PDF
An Efficient Method for Underwater Video Summarization and Object Detection Using YoLoV3
12
作者 Mubashir Javaid Muazzam Maqsood +2 位作者 Farhan Aadil Jibran Safdar Yongsung Kim 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1295-1310,共16页
Currently,worldwide industries and communities are concerned with building,expanding,and exploring the assets and resources found in the oceans and seas.More precisely,to analyze a stock,archaeology,and surveillance,s... Currently,worldwide industries and communities are concerned with building,expanding,and exploring the assets and resources found in the oceans and seas.More precisely,to analyze a stock,archaeology,and surveillance,sev-eral cameras are installed underseas to collect videos.However,on the other hand,these large size videos require a lot of time and memory for their processing to extract relevant information.Hence,to automate this manual procedure of video assessment,an accurate and efficient automated system is a greater necessity.From this perspective,we intend to present a complete framework solution for the task of video summarization and object detection in underwater videos.We employed a perceived motion energy(PME)method tofirst extract the keyframes followed by an object detection model approach namely YoloV3 to perform object detection in underwater videos.The issues of blurriness and low contrast in underwater images are also taken into account in the presented approach by applying the image enhancement method.Furthermore,the suggested framework of underwater video summarization and object detection has been evaluated on a publicly available brackish dataset.It is observed that the proposed framework shows good performance and hence ultimately assists several marine researchers or scientists related to thefield of underwater archaeology,stock assessment,and surveillance. 展开更多
关键词 Computer vision deep learning digital image processing underwater video analysis video summarization object detection YOLOV3
下载PDF
AUTOMATIC SEGMENTATION OF VIDEO OBJECT PLANES IN MPEG-4 BASED ON SPATIO-TEMPORAL INFORMATION
13
作者 XiaJinxiang HuangShunji 《Journal of Electronics(China)》 2004年第3期206-212,共7页
Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on... Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on Spatio-Temporal Information (SBSTI) is proposed.The proceeding results demonstrate the good performance of the algorithm. 展开更多
关键词 video sequence segmentation video object Plane (VOP) Based on spatiotemporal information MPEG-4
下载PDF
Visible-infrared person re-identification using query related cluster
14
作者 赵倩倩 WU Hanxiao +2 位作者 HUANG Linhan ZHU Jianqing ZENG Huanqiang 《High Technology Letters》 EI CAS 2023年第2期194-205,共12页
Visible-infrared person re-identification(VIPR), is a cross-modal retrieval task that searches a target from a gallery captured by cameras of different spectrums.The severe challenge for VIPR is the large intra-class ... Visible-infrared person re-identification(VIPR), is a cross-modal retrieval task that searches a target from a gallery captured by cameras of different spectrums.The severe challenge for VIPR is the large intra-class variation caused by the modal discrepancy between visible and infrared images.For that, this paper proposes a query related cluster(QRC) method for VIPR.Firstly, this paper uses an attention mechanism to calculate the similarity relation between a visible query and infrared images with the same identity in the gallery.Secondly, those infrared images with the same query images are aggregated by using the similarity relation to form a dynamic clustering center corresponding to the query image.Thirdly, QRC loss function is designed to enlarge the similarity between the query image and its dynamic cluster center to achieve query related clustering, so as to compact the intra-class variations.Consequently, in the proposed QRC method, each query has its own dynamic clustering center, which can well characterize intra-class variations in VIPR.Experimental results demonstrate that the proposed QRC method is superior to many state-of-the-art approaches, acquiring a 90.77% rank-1 identification rate on the RegDB dataset. 展开更多
关键词 query related cluster(QRC) cross-modality visible-infrared person re-identification(VIPR) video surveillance
下载PDF
New Fragile Watermarking Technique to Identify Inserted Video Objects Using H.264 and Color Features
15
作者 Raheem Ogla Eman Shakar Mahmood +1 位作者 Rasha I.Ahmed Abdul Monem S.Rahma 《Computers, Materials & Continua》 SCIE EI 2023年第9期3075-3096,共22页
The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video ind... The transmission of video content over a network raises various issues relating to copyright authenticity,ethics,legality,and privacy.The protection of copyrighted video content is a significant issue in the video industry,and it is essential to find effective solutions to prevent tampering and modification of digital video content during its transmission through digital media.However,there are stillmany unresolved challenges.This paper aims to address those challenges by proposing a new technique for detectingmoving objects in digital videos,which can help prove the credibility of video content by detecting any fake objects inserted by hackers.The proposed technique involves using two methods,the H.264 and the extraction color features methods,to embed and extract watermarks in video frames.The study tested the performance of the system against various attacks and found it to be robust.The evaluation was done using different metrics such as Peak-Signal-to-Noise Ratio(PSNR),Mean Squared Error(MSE),Structural Similarity Index Measure(SSIM),Bit Correction Ratio(BCR),and Normalized Correlation.The accuracy of identifying moving objects was high,ranging from 96.3%to 98.7%.The system was also able to embed a fragile watermark with a success rate of over 93.65%and had an average capacity of hiding of 78.67.The reconstructed video frames had high quality with a PSNR of at least 65.45 dB and SSIMof over 0.97,making them imperceptible to the human eye.The system also had an acceptable average time difference(T=1.227/s)compared with other state-of-the-art methods. 展开更多
关键词 video watermarking fragile digital watermark copyright protection moving objects color image features H.264
下载PDF
VIDEO OBJECT SEGMENTATION BY 2-D MESH-BASED MOTION ANALYSIS
16
作者 Wang Yujian Gao Jianpo Yang Hao Wu Zhenyang 《Journal of Electronics(China)》 2007年第5期668-673,共6页
Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitt... Video object extraction is a key technology in content-based video coding.A novel video object extracting algorithm by two Dimensional (2-D) mesh-based motion analysis is proposed in this paper.Firstly,a 2-D mesh fitting the original frame image is obtained via feature detection algorithm. Then,higher order statistics motion analysis is applied on the 2-D mesh representation to get an initial motion detection mask.After post-processing,the final segmenting mask is quickly obtained.And hence the video object is effectively extracted.Experimental results show that the proposed algorithm combines the merits of mesh-based segmenting algorithms and pixel-based segmenting algorithms,and hereby achieves satisfactory subjective and objective performance while dramatically increasing the segmenting speed. 展开更多
关键词 video object extraction 2-D mesh Higher order statistics
下载PDF
Detection of Objects in Motion—A Survey of Video Surveillance
17
作者 Jamal Raiyn 《Advances in Internet of Things》 2013年第4期73-78,共6页
Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventi... Video surveillance system is the most important issue in homeland security field. It is used as a security system because of its ability to track and to detect a particular person. To overcome the lack of the conventional video surveillance system that is based on human perception, we introduce a novel cognitive video surveillance system (CVS) that is based on mobile agents. CVS offers important attributes such as suspect objects detection and smart camera cooperation for people tracking. According to many studies, an agent-based approach is appropriate for distributed systems, since mobile agents can transfer copies of themselves to other servers in the system. 展开更多
关键词 video SURVEILLANCE object DETECTION Image Analysis
下载PDF
Rebound of Region of Interest (RROI), a New Kernel-Based Algorithm for Video Object Tracking Applications
18
作者 Andres Alarcon Ramirez Mohamed Chouikha 《Journal of Signal and Information Processing》 2014年第4期97-103,共7页
This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and ... This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes. 展开更多
关键词 video object Tracking Cluttered Conditions Kernel-Based Algorithm
下载PDF
From Sex Objects to Heroines A Tough Road for Female Characters in Video Games
19
作者 Adam Flamma 《Journal of Literature and Art Studies》 2014年第5期409-417,共9页
Female character in video games is the one of the most controversial topic in game studies and nowadays women's anthropology. From the beginning of role in games' plot to sexualized graphical representation, woman i... Female character in video games is the one of the most controversial topic in game studies and nowadays women's anthropology. From the beginning of role in games' plot to sexualized graphical representation, woman in virtual world were (and sometimes still are) a point of discussion about characters sexualisation and role of female sex in virtual industry. The main aim of this paper is to present analysis of female representation in video games and how in last 30 years it has changed. In other words, how female characters were ennobled from sex object to main protagonist status. In presented research, there were used mostly the examples of popular video games with extended plot and world which can be explored by protagonists. Video game historiography, textual analysis (which helped to treat video game character as a protagonist), and thematic analysis of video games were used as a main research method. The main conclusion of this paper is that female characters can overcome all gender or sexual stereotypes and even eventually became an icon of popular culture 展开更多
关键词 video games female characters women in video games sex object Lara Croft
下载PDF
Review of Image-Based Person Re-Identification in Deep Learning
20
作者 Junchuan Yang 《Journal of New Media》 2020年第4期137-148,共12页
Person Re-identification(re-ID)is a hot research topic in the field of computer vision now,which can be regarded as a sub-problem of image retrieval.The goal of person re-ID is to give a monitoring pedestrian image an... Person Re-identification(re-ID)is a hot research topic in the field of computer vision now,which can be regarded as a sub-problem of image retrieval.The goal of person re-ID is to give a monitoring pedestrian image and retrieve other images of the pedestrian across the device.At present,person re-ID is mainly divided into two categories.One is the traditional methods,which relies heavily on manual features.The other is to use deep learning technology to solve.Because traditional methods mainly rely on manual feature,they cannot adapt well to a complex environment with a large amount of data.In recent years,with the development of deep learning technology,a large number of person re-ID methods based on deep learning have been proposed,which greatly improves the accuracy of person re-ID. 展开更多
关键词 Person re-identification deep learning video surveillance system
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部