Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based o...Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based on the imageand video processing technology of OpenCV, the Faster R-CNN object detectionalgorithm and other technologies. Through the depth camera and electronic scale,it can identify the object category, volume and weight of the items placed on thescale by the sender and store the video of the objects packed into the cabinet. Theoverall framework of the systemwas constructed;key technologies were applied torealize the system;the function of the system was tested. The experimental resultsshow that it achieves the intelligent automation of delivery and delivery throughthe integrated express delivery system of intelligent identification and informationtraceability, which promotes the development of express delivery industry.展开更多
Video steganography plays an important role in secret communication that conceals a secret video in a cover video by perturbing the value of pixels in the cover frames.Imperceptibility is the first and foremost requir...Video steganography plays an important role in secret communication that conceals a secret video in a cover video by perturbing the value of pixels in the cover frames.Imperceptibility is the first and foremost requirement of any steganographic approach.Inspired by the fact that human eyes perceive pixel perturbation differently in different video areas,a novel effective and efficient Deeply‐Recursive Attention Network(DRANet)for video steganography to find suitable areas for information hiding via modelling spatio‐temporal attention is proposed.The DRANet mainly contains two important components,a Non‐Local Self‐Attention(NLSA)block and a Non‐Local Co‐Attention(NLCA)block.Specifically,the NLSA block can select the cover frame areas which are suitable for hiding by computing the correlations among inter‐and intra‐cover frames.The NLCA block aims to effectively produce the enhanced representations of the secret frames to enhance the robustness of the model and alleviate the influence of different areas in the secret video.Furthermore,the DRANet reduces the model parameters by performing similar operations on the different frames within an input video recursively.Experimental results show the proposed DRANet achieves better performance with fewer parameters than the state‐of‐the‐art competitors.展开更多
Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, d...Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, determine the volumetric production of undesired fluid, establish automated controls based on these measurements avoiding over-flooding or over-production, guaranteeing accurate predictive maintenance, etc. Difficulties being faced have been the determination of the velocity of specific fluids embedded in some others, for example, determining the gas bubbles stream velocity flowing throughout liquid fluid phase. Although different and already applicable methods have been researched and already implemented within the industry, a non-intrusive automated way of providing those stream velocities has its importance, and may have a huge impact in projects budget. Knowing the importance of its determination, this developed script uses a methodology of breaking-down real-time videos media into frame images, analyzing by pixel correlations possible superposition matches for further gas bubbles stream velocity estimation. In raw sense, the script bases itself in functions and procedures already available in MatLab, which can be used for image processing and treatments, allowing the methodology to be implemented. Its accuracy after the running test was of around 97% (ninety-seven percent);the raw source code with comments had almost 3000 (three thousand) characters;and the hardware placed for running the code was an Intel Core Duo 2.13 [Ghz] and 2 [Gb] RAM memory capable workstation. Even showing good results, it could be stated that just the end point correlations were actually getting to the final solution. So that, making use of self-learning functions or neural network, one could surely enhance the capability of the application to be run in real-time without getting exhaust by iterative loops.展开更多
This paper describes a dynamically reconfigurable data-flow hardware architecture optimized for the computation of image and video. It is a scalable hierarchically organized parallel architecture that consists of data...This paper describes a dynamically reconfigurable data-flow hardware architecture optimized for the computation of image and video. It is a scalable hierarchically organized parallel architecture that consists of data-flow clusters and finite-state machine (FSM) controllers. Each cluster contains various kinds of ceils that are optimized for video processing. Furthermore, to facilitate the design process, we provide a C-like language for design specification and associated design tools. Some video applications have been implemented in the architecture to demonstrate the applicability and flexibility of the architecture. Experimental results show that the architecture, along with its video applications, can be used in many real-time video processing.展开更多
The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated ...The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.展开更多
介绍一种应用于USB video camera中的自动对焦系统。由USB video camera获取的视频图像经计算机进行FFT运算或微分运算,得到其频谱幅值数据或微分幅值数据,计算机根据所得数据判断USB video camera中的镜头是否处于离焦位置并控制电机...介绍一种应用于USB video camera中的自动对焦系统。由USB video camera获取的视频图像经计算机进行FFT运算或微分运算,得到其频谱幅值数据或微分幅值数据,计算机根据所得数据判断USB video camera中的镜头是否处于离焦位置并控制电机将镜头移到对焦位置。文章还进一步讨论了提高自动对焦准确度的措施。实验结果表明该自动对焦系统能很好地实现USB video camera的自动对焦,该系统将使具有USB接口的video camera使用更简单方便。展开更多
基金This article is supported by the 2020 Innovation and Entrepreneurship Training Program forCollege Students in Jiangsu Province(Project name:Traceablemulti-functional intelligent express cabinet,No.201911460090P,No.202011460090T)This article is supported by the National Natural Science Foundation of China Youth Science Foundation project(Project name:Research on Deep Discriminant Spares Representation Learning Method for Feature Extraction,No.61806098)This article is supported by Scientific Research Project of Nanjing XiaoZhuang University(Project name:Multi-robot collaborative system,No.2017NXY16).
文摘Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based on the imageand video processing technology of OpenCV, the Faster R-CNN object detectionalgorithm and other technologies. Through the depth camera and electronic scale,it can identify the object category, volume and weight of the items placed on thescale by the sender and store the video of the objects packed into the cabinet. Theoverall framework of the systemwas constructed;key technologies were applied torealize the system;the function of the system was tested. The experimental resultsshow that it achieves the intelligent automation of delivery and delivery throughthe integrated express delivery system of intelligent identification and informationtraceability, which promotes the development of express delivery industry.
基金supported in part by NSFC(62002320,U19B2043,61672456)the Key R&D Program of Zhejiang Province,China(2021C01119).
文摘Video steganography plays an important role in secret communication that conceals a secret video in a cover video by perturbing the value of pixels in the cover frames.Imperceptibility is the first and foremost requirement of any steganographic approach.Inspired by the fact that human eyes perceive pixel perturbation differently in different video areas,a novel effective and efficient Deeply‐Recursive Attention Network(DRANet)for video steganography to find suitable areas for information hiding via modelling spatio‐temporal attention is proposed.The DRANet mainly contains two important components,a Non‐Local Self‐Attention(NLSA)block and a Non‐Local Co‐Attention(NLCA)block.Specifically,the NLSA block can select the cover frame areas which are suitable for hiding by computing the correlations among inter‐and intra‐cover frames.The NLCA block aims to effectively produce the enhanced representations of the secret frames to enhance the robustness of the model and alleviate the influence of different areas in the secret video.Furthermore,the DRANet reduces the model parameters by performing similar operations on the different frames within an input video recursively.Experimental results show the proposed DRANet achieves better performance with fewer parameters than the state‐of‐the‐art competitors.
基金financial support from the Brazilian Federal Agency for Support and Evaluation of Graduate Education(Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior—CAPES,scholarship process no BEX 0506/15-0)the Brazilian National Agency of Petroleum,Natural Gas and Biofuels(Agencia Nacional do Petroleo,Gas Natural e Biocombustiveis—ANP),in cooperation with the Brazilian Financier of Studies and Projects(Financiadora de Estudos e Projetos—FINEP)the Brazilian Ministry of Science,Technology and Innovation(Ministério da Ciencia,Tecnologia e Inovacao—MCTI)through the ANP’s Human Resources Program of the State University of Sao Paulo(Universidade Estadual Paulista—UNESP)for the Oil and Gas Sector PRH-ANP/MCTI no 48(PRH48).
文摘Important in many different sectors of the industry, the determination of stream velocity has become more and more important due to measurements precision necessity, in order to determine the right production rates, determine the volumetric production of undesired fluid, establish automated controls based on these measurements avoiding over-flooding or over-production, guaranteeing accurate predictive maintenance, etc. Difficulties being faced have been the determination of the velocity of specific fluids embedded in some others, for example, determining the gas bubbles stream velocity flowing throughout liquid fluid phase. Although different and already applicable methods have been researched and already implemented within the industry, a non-intrusive automated way of providing those stream velocities has its importance, and may have a huge impact in projects budget. Knowing the importance of its determination, this developed script uses a methodology of breaking-down real-time videos media into frame images, analyzing by pixel correlations possible superposition matches for further gas bubbles stream velocity estimation. In raw sense, the script bases itself in functions and procedures already available in MatLab, which can be used for image processing and treatments, allowing the methodology to be implemented. Its accuracy after the running test was of around 97% (ninety-seven percent);the raw source code with comments had almost 3000 (three thousand) characters;and the hardware placed for running the code was an Intel Core Duo 2.13 [Ghz] and 2 [Gb] RAM memory capable workstation. Even showing good results, it could be stated that just the end point correlations were actually getting to the final solution. So that, making use of self-learning functions or neural network, one could surely enhance the capability of the application to be run in real-time without getting exhaust by iterative loops.
基金Foundation item: the National Natural Science Foundation of China (No. 61136002), the Key Project of Chinese Ministry of Education (No. 211180), and the Shaanxi Provincial Industrial and Technological Project (No. 2011k06-47).
文摘This paper describes a dynamically reconfigurable data-flow hardware architecture optimized for the computation of image and video. It is a scalable hierarchically organized parallel architecture that consists of data-flow clusters and finite-state machine (FSM) controllers. Each cluster contains various kinds of ceils that are optimized for video processing. Furthermore, to facilitate the design process, we provide a C-like language for design specification and associated design tools. Some video applications have been implemented in the architecture to demonstrate the applicability and flexibility of the architecture. Experimental results show that the architecture, along with its video applications, can be used in many real-time video processing.
文摘The alpha stable self-similar stochastic process has been proved an effective model for high variable data traffic. A deep insight into some special issues and considerations on use of the process to model aggregated VBR video traffic is made. Different methods to estimate stability parameter a and self-similar parameter H are compared. Processes to generate the linear fractional stable noise (LFSN) and the alpha stable random variables are provided. Model construction and the quantitative comparisons with fractional Brown motion (FBM) and real traffic are also examined. Open problems and future directions are also given with thoughtful discussions.
文摘介绍一种应用于USB video camera中的自动对焦系统。由USB video camera获取的视频图像经计算机进行FFT运算或微分运算,得到其频谱幅值数据或微分幅值数据,计算机根据所得数据判断USB video camera中的镜头是否处于离焦位置并控制电机将镜头移到对焦位置。文章还进一步讨论了提高自动对焦准确度的措施。实验结果表明该自动对焦系统能很好地实现USB video camera的自动对焦,该系统将使具有USB接口的video camera使用更简单方便。