A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system whic...A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.展开更多
The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). ...The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). HEVC is the next-generation video coding standard after H.264/AVC. The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications, such as, video telephony, storage, broadcast, streaming, especially for large picture size video (4k x 2k). The HEVC standard will be completed as an ISO/iEC and ITU-T standard in January 2013. in February 2012, the HEVC standardization process reached its committee draft (CD) stage. The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC. This paper provides an overview of the technical features of HEVC close to HEVC CD stage, covering high-level structure, coding units, prediction units, transform units, spatial signal transformation and PCM representation, intra-picture prediction, inter-picture prediction, entropy coding and in-loop filtering. The HEVC coding efficiency performances comparing with H.264/AVC are also provided.展开更多
In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is a...In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.展开更多
A new video watermarking method for the Audio Video coding Standard (AVS) is proposed. According to human visual masking properties, this method determines the region of interest for watermark embedding by analyzing v...A new video watermarking method for the Audio Video coding Standard (AVS) is proposed. According to human visual masking properties, this method determines the region of interest for watermark embedding by analyzing video semantics, and generates dynamic robust watermark according to video motion semantics, and embeds watermarks in the Intermediate Frequency (IF) Discrete Cosine Transform (DCT) coefficients of the luminance sub-block prediction residual in the region of interest. This method controls watermark embedding strength adaptively by video textures semantics. Ex- periments show that this method is robust not only to various conventional attacks, but also to re-frame, frame cropping, frame deletion and other video-specific attacks.展开更多
Audio Video Coding Standard (AVS) is a second-generation source coding standard and the first standard for audio and video coding in China with independent intellectual property rights. Its performance has reached t...Audio Video Coding Standard (AVS) is a second-generation source coding standard and the first standard for audio and video coding in China with independent intellectual property rights. Its performance has reached the international standard. Its coding efficiency is 2 to 3 times greater than that of MPEG -2. This technical solution is more simple, and it can greatly save channel resource. After more than ten years' development, AVS has achieved great success. The latest version of the AVS audio coding standard is ongoing and mainly aims at the increasing demand for low bitrate and high quality audio services. The paper reviews the history and recent development of AVS audio coding standard in terms of basic features, key techniques and performance. Finally, the future development of AVS audio coding standard is discussed.展开更多
In comparison with almost universal adoption of telephony and mobile technologies in modern day healthcare, video conferencing has yet to become a ubiquitous clinical tool. Currently telehealth services are faced with...In comparison with almost universal adoption of telephony and mobile technologies in modern day healthcare, video conferencing has yet to become a ubiquitous clinical tool. Currently telehealth services are faced with a bewildering range of video conferencing software and hardware choices. This paper provides a case study in the selection of video conferencing services by the Flinders University Telehealth in the Home trial (FTH Trial) to support healthcare in the home. Using pragmatic methods, video conferencing solutions available on the market were assessed for usability, reliability, cost, compatibility, interoperability, performance and privacy considerations. The process of elimination through which the eventual solution was chosen, the selection criteria used for each requirement and the corresponding results are described. The resulting product set, although functional, had restricted ability to directly connect with systems used by healthcare providers elsewhere in the system. This outcome illustrates the impact on one small telehealth provider of the broader struggles between competing video conferencing vendors. At stake is the ability to communicate between healthcare organizations and provide public access to healthcare. Comparison of the current state of the video conferencing market place with the evolution of the telephony system reveals that video conferencing still has a long way to go before it can be considered as easy to use as the telephone. Health organizations that are concerned to improve access and quality of care should seek to influence greater standardization and interoperability though cooperation with one another, the private sector, international organizations and by encouraging governments to play a more active role in this sphere.展开更多
The design and realization of a videoconference system based on international recommendation are introduced in this paper, and the hardware implementation of video codec based on ITU-T H. 261 is briefly discussed. Fur...The design and realization of a videoconference system based on international recommendation are introduced in this paper, and the hardware implementation of video codec based on ITU-T H. 261 is briefly discussed. Furthermore, the buffer control method and the adaptive control strategy for quantization are proposed, which are adaptive and robust. This system can be operated under the transmission rate ranging from 128kb/s to 2Mb/s. With these strategies for the videoconference system, the high quality image is obtained. The time delay of the system is about half a second.展开更多
Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process o...Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process of video data provides secure and less consumption of storage and the reconstruction process consists of the reverse process with the extraction. In this paper, the coding of video is carried out at a very low bit rate with the enhancement of performance by proposing an approach of modified Set Partitioning in Hierarchical Tree (MSPIHT). This method encodes the high frequency frames with the scheduling of wavelet transform for efficient performances of encoding and improves the ability of both the frequency and time. By applying empirical wavelet transform on each video frame, the component of video frequency is extracted and the low frequency frame is encoded by the H.264/AVC standard. The low coefficient values are ignored in applying the threshold and in the reconstruction process, HBLPCE method is used for imaging enhancement. The simulation of the proposed approach analysis shows better performance in reliable process and efficiency when compared to existing.展开更多
Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to con...Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.展开更多
为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内...为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。展开更多
文摘A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.
文摘The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). HEVC is the next-generation video coding standard after H.264/AVC. The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications, such as, video telephony, storage, broadcast, streaming, especially for large picture size video (4k x 2k). The HEVC standard will be completed as an ISO/iEC and ITU-T standard in January 2013. in February 2012, the HEVC standardization process reached its committee draft (CD) stage. The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC. This paper provides an overview of the technical features of HEVC close to HEVC CD stage, covering high-level structure, coding units, prediction units, transform units, spatial signal transformation and PCM representation, intra-picture prediction, inter-picture prediction, entropy coding and in-loop filtering. The HEVC coding efficiency performances comparing with H.264/AVC are also provided.
文摘In this paper, we propose a new method for very low bit-rate video coding that combines H.264/AVC standard and two-dimensional discrete wavelet transform. In this method, first a two dimensional wavelet transform is applied on each video frame independently to extract the low frequency components for each frame and then the low frequency parts of all frames are coded using H.264/AVC codec. On the other hand, the high frequency parts of the video frames are coded by Run Length Coding algorithm, after applying a threshold to neglect the low value coefficients. Experiments show that our proposed method can achieve better rate-distortion performance at very low bit-rate applications below 16 kbits/s compared to applying H.264/AVC standard directly to all frames. Applications of our proposed video coding technique include video telephony, video-conferencing, transmitting or receiving video over half-rate traffic channels of GSM networks.
基金Supported by the Natural Science Foundation of Shaanxi Province (SJ08F15)the Industry Tackling Project of Shaanxi Province (2010K06-20)the National Natural Science Foundation of China and Civil Aviation Ad-ministration of China (No. 61072110)
文摘A new video watermarking method for the Audio Video coding Standard (AVS) is proposed. According to human visual masking properties, this method determines the region of interest for watermark embedding by analyzing video semantics, and generates dynamic robust watermark according to video motion semantics, and embeds watermarks in the Intermediate Frequency (IF) Discrete Cosine Transform (DCT) coefficients of the luminance sub-block prediction residual in the region of interest. This method controls watermark embedding strength adaptively by video textures semantics. Ex- periments show that this method is robust not only to various conventional attacks, but also to re-frame, frame cropping, frame deletion and other video-specific attacks.
文摘Audio Video Coding Standard (AVS) is a second-generation source coding standard and the first standard for audio and video coding in China with independent intellectual property rights. Its performance has reached the international standard. Its coding efficiency is 2 to 3 times greater than that of MPEG -2. This technical solution is more simple, and it can greatly save channel resource. After more than ten years' development, AVS has achieved great success. The latest version of the AVS audio coding standard is ongoing and mainly aims at the increasing demand for low bitrate and high quality audio services. The paper reviews the history and recent development of AVS audio coding standard in terms of basic features, key techniques and performance. Finally, the future development of AVS audio coding standard is discussed.
文摘In comparison with almost universal adoption of telephony and mobile technologies in modern day healthcare, video conferencing has yet to become a ubiquitous clinical tool. Currently telehealth services are faced with a bewildering range of video conferencing software and hardware choices. This paper provides a case study in the selection of video conferencing services by the Flinders University Telehealth in the Home trial (FTH Trial) to support healthcare in the home. Using pragmatic methods, video conferencing solutions available on the market were assessed for usability, reliability, cost, compatibility, interoperability, performance and privacy considerations. The process of elimination through which the eventual solution was chosen, the selection criteria used for each requirement and the corresponding results are described. The resulting product set, although functional, had restricted ability to directly connect with systems used by healthcare providers elsewhere in the system. This outcome illustrates the impact on one small telehealth provider of the broader struggles between competing video conferencing vendors. At stake is the ability to communicate between healthcare organizations and provide public access to healthcare. Comparison of the current state of the video conferencing market place with the evolution of the telephony system reveals that video conferencing still has a long way to go before it can be considered as easy to use as the telephone. Health organizations that are concerned to improve access and quality of care should seek to influence greater standardization and interoperability though cooperation with one another, the private sector, international organizations and by encouraging governments to play a more active role in this sphere.
基金the High Technology Research and Development Programme of China
文摘The design and realization of a videoconference system based on international recommendation are introduced in this paper, and the hardware implementation of video codec based on ITU-T H. 261 is briefly discussed. Furthermore, the buffer control method and the adaptive control strategy for quantization are proposed, which are adaptive and robust. This system can be operated under the transmission rate ranging from 128kb/s to 2Mb/s. With these strategies for the videoconference system, the high quality image is obtained. The time delay of the system is about half a second.
文摘Nowadays video coding approach is a major key in many applications for easy transmission and storage consumption. The process of transformation is based on the empirical wavelet transform (EWT). The encoding process of video data provides secure and less consumption of storage and the reconstruction process consists of the reverse process with the extraction. In this paper, the coding of video is carried out at a very low bit rate with the enhancement of performance by proposing an approach of modified Set Partitioning in Hierarchical Tree (MSPIHT). This method encodes the high frequency frames with the scheduling of wavelet transform for efficient performances of encoding and improves the ability of both the frequency and time. By applying empirical wavelet transform on each video frame, the component of video frequency is extracted and the low frequency frame is encoded by the H.264/AVC standard. The low coefficient values are ignored in applying the threshold and in the reconstruction process, HBLPCE method is used for imaging enhancement. The simulation of the proposed approach analysis shows better performance in reliable process and efficiency when compared to existing.
文摘Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.
文摘为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。