[Objectives]To study the antioxidant activity of the ethyl acetate extract of Amomum villosum Lour.[Methods]The removal rate of chelated iron ions,hydroxyl radicals,superoxide anion free radicals and DPPH free radical...[Objectives]To study the antioxidant activity of the ethyl acetate extract of Amomum villosum Lour.[Methods]The removal rate of chelated iron ions,hydroxyl radicals,superoxide anion free radicals and DPPH free radicals by the ethyl acetate extract of A.villosum Lour.was determined by UV spectrophotometer.[Results]0.5000μg/mL ethyl acetate extract of A.villosum Lour.had the strongest ability to chelate with ferrous ions and to remove hydroxyl radicals,superoxide anion free radicals and DPPH free radicals.The ability to chelate with ferrous ions was 95.14%,and the removal rate of the above free radicals was 86.217%,81.44%,and 85.16%.[Conclusions]The ethyl acetate extract of A.villosum Lour.had a strong antioxidant effect,and its antioxidant capacity was related to the sample concentration,which provides a theoretical basis for its application in the development of antioxidant skin care products.展开更多
Wheat sharp eyespot, a stem disease caused by the soilborne fungus Rhizoctonia cerealis van der Hoeven,has become a threat to wheat production worldwide. Exploiting resistance resources from wild relatives of wheat is...Wheat sharp eyespot, a stem disease caused by the soilborne fungus Rhizoctonia cerealis van der Hoeven,has become a threat to wheat production worldwide. Exploiting resistance resources from wild relatives of wheat is a promising strategy for controlling this disease. In this study, a new wheat–Dasypyrum villosum T2DS·2V#4L translocation line in the background of Chinese Spring(CS) showed stable resistance to R. cerealis. Introgression of the T2DS·2V#4L chromosome into wheat cultivar Aikang 58 by backcrossing produced a marked increase in sharp eyespot resistance in NIL-T2DS·2V#4L in comparison with NILT2DS·2DL, and no detrimental effects of 2V#4L on agronomic traits were observed in the BC2F2, BC2F2:3,and BC2F2:4generations. Flow-sorted sequencing of 2V#4L yielded 384.3 Mb of assembled sequence, and8836 genes were predicted of which 6154 had orthologs in at least one of the 2AL, 2BL, and 2DL arms of CS, whereas 1549 genes were unique to 2V#4L. About 100,000 SNPs were detected in genes of 2V#4L and2DL in 10 sequenced bread wheat cultivars. A Kompetitive Allele Specific Polymerase chain reaction and30 conserved ortholog sequence markers were developed to trace the 2V#4L chromatin in wheat backgrounds. T2DS·2V#4L compensating translocation lines represent novel germplasm with sharp eyespot resistance and the markers will allow rapid detection in breeding programs.展开更多
Powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici(Bgt), is a global disease that poses a serious threat to wheat production. To explore additional resistance gene, a wheatDasypyrum villo...Powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici(Bgt), is a global disease that poses a serious threat to wheat production. To explore additional resistance gene, a wheatDasypyrum villosum 1 V#5(1 D) disomic substitution line NAU1813(2 n = 42) with high level of seedling resistance to powdery mildew was used to generate the recombination between chromosomes 1 V#5 and1 D. Four introgression lines, including t1 VS#5 ditelosomic addition line NAU1815, t1 VL#5 ditelosomic addition line NAU1816, homozygous T1 DL·1 VS#5 translocation line NAU1817, and homozygous T1 DS·1 VL#5 translocation line NAU1818 were developed from the selfing progenies of 1 V#5 and 1 D double monosomic line that derived from F1 hybrids of NAU1813/NAU0686. All of them were characterized by fluorescence in situ hybridization, genomic in situ hybridization, 1 V-specific markers analysis, and powdery mildew tests at different developmental stages. A new powdery mildew resistance gene named Pm67 was physically located in the terminal bin(FL 0.70–1.00) of 1 VS#5. Lines with Pm67 exhibited seedling stage immunity and tissue-differentiated reactions at adult plant stage. The sheaths, stems, and spikes of the Pm67 line were still immune, but the leaves showed a low degree of susceptibility.Microscopic observation showed that most penetration attempts were stopped in association with papillae on the sheath, and colonies cannot form conidia on the susceptible leaf of Pm67 line at adult plant stage, suggesting that the defence layers of the Pm67 line is tissue-differentiated. Thus, the T1 DL·1 VS#5 translocation line NAU1817 provides a new germplasm in wheat breeding for improvement of powdery mildew resistance.展开更多
T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding ...T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.展开更多
基金Supported by the Innovation and Entrepreneurship Training Planning Project for University Students in Guangxi Autonomous Region(S202210599128X).
文摘[Objectives]To study the antioxidant activity of the ethyl acetate extract of Amomum villosum Lour.[Methods]The removal rate of chelated iron ions,hydroxyl radicals,superoxide anion free radicals and DPPH free radicals by the ethyl acetate extract of A.villosum Lour.was determined by UV spectrophotometer.[Results]0.5000μg/mL ethyl acetate extract of A.villosum Lour.had the strongest ability to chelate with ferrous ions and to remove hydroxyl radicals,superoxide anion free radicals and DPPH free radicals.The ability to chelate with ferrous ions was 95.14%,and the removal rate of the above free radicals was 86.217%,81.44%,and 85.16%.[Conclusions]The ethyl acetate extract of A.villosum Lour.had a strong antioxidant effect,and its antioxidant capacity was related to the sample concentration,which provides a theoretical basis for its application in the development of antioxidant skin care products.
基金supported by the National Key Research and Develpment Program of China (2021YFD1200600)the National Natural Science Foundation of China (31871619, 32101703, and 32101800)+4 种基金the Natural Science Foundation of Jiangsu Province (BK20210152)the Jiangsu Seed Industry Revitalization Project (JBGS (2021) 013)the Key Research and Development Program of Jiangsu Province(BE2022346)Jiangsu Agricultural Science and Technology Innovation Fund of China (CX (20) 3029)supported by the European Regional Development Fund (CZ.02.1.01/0.0/0.0/16_019/0000827)。
文摘Wheat sharp eyespot, a stem disease caused by the soilborne fungus Rhizoctonia cerealis van der Hoeven,has become a threat to wheat production worldwide. Exploiting resistance resources from wild relatives of wheat is a promising strategy for controlling this disease. In this study, a new wheat–Dasypyrum villosum T2DS·2V#4L translocation line in the background of Chinese Spring(CS) showed stable resistance to R. cerealis. Introgression of the T2DS·2V#4L chromosome into wheat cultivar Aikang 58 by backcrossing produced a marked increase in sharp eyespot resistance in NIL-T2DS·2V#4L in comparison with NILT2DS·2DL, and no detrimental effects of 2V#4L on agronomic traits were observed in the BC2F2, BC2F2:3,and BC2F2:4generations. Flow-sorted sequencing of 2V#4L yielded 384.3 Mb of assembled sequence, and8836 genes were predicted of which 6154 had orthologs in at least one of the 2AL, 2BL, and 2DL arms of CS, whereas 1549 genes were unique to 2V#4L. About 100,000 SNPs were detected in genes of 2V#4L and2DL in 10 sequenced bread wheat cultivars. A Kompetitive Allele Specific Polymerase chain reaction and30 conserved ortholog sequence markers were developed to trace the 2V#4L chromatin in wheat backgrounds. T2DS·2V#4L compensating translocation lines represent novel germplasm with sharp eyespot resistance and the markers will allow rapid detection in breeding programs.
基金supported by the National Natural Science Foundation of China(31971938)the Natural Science Foundation of Jiangsu Province(BK20181316)+1 种基金the Special Fund for Independent Innovation of Agricultural Science and Technology in Jiangsu,China(CX(19)1001)Fundamental Research Funds for the Central Universities(KYZ201809)。
文摘Powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici(Bgt), is a global disease that poses a serious threat to wheat production. To explore additional resistance gene, a wheatDasypyrum villosum 1 V#5(1 D) disomic substitution line NAU1813(2 n = 42) with high level of seedling resistance to powdery mildew was used to generate the recombination between chromosomes 1 V#5 and1 D. Four introgression lines, including t1 VS#5 ditelosomic addition line NAU1815, t1 VL#5 ditelosomic addition line NAU1816, homozygous T1 DL·1 VS#5 translocation line NAU1817, and homozygous T1 DS·1 VL#5 translocation line NAU1818 were developed from the selfing progenies of 1 V#5 and 1 D double monosomic line that derived from F1 hybrids of NAU1813/NAU0686. All of them were characterized by fluorescence in situ hybridization, genomic in situ hybridization, 1 V-specific markers analysis, and powdery mildew tests at different developmental stages. A new powdery mildew resistance gene named Pm67 was physically located in the terminal bin(FL 0.70–1.00) of 1 VS#5. Lines with Pm67 exhibited seedling stage immunity and tissue-differentiated reactions at adult plant stage. The sheaths, stems, and spikes of the Pm67 line were still immune, but the leaves showed a low degree of susceptibility.Microscopic observation showed that most penetration attempts were stopped in association with papillae on the sheath, and colonies cannot form conidia on the susceptible leaf of Pm67 line at adult plant stage, suggesting that the defence layers of the Pm67 line is tissue-differentiated. Thus, the T1 DL·1 VS#5 translocation line NAU1817 provides a new germplasm in wheat breeding for improvement of powdery mildew resistance.
基金financially supported by the National Key Research and Development Program,China (2016YFD0102000) the Agricultural Science and Technology Innovation Program (ASTIP) of the CAAS
文摘T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear. Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected. However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well. Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation. A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes. The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.