Hydrosilylation is one of the most important reactions in synthetic chemistry and ranks as a fundamental method to access organosilicon compounds in industrial and academic processes.However,the enantioselective const...Hydrosilylation is one of the most important reactions in synthetic chemistry and ranks as a fundamental method to access organosilicon compounds in industrial and academic processes.However,the enantioselective construction of chiral-at-silicon compounds via catalytic asymmetric hydrosilylation remained limited and difficult.Here we report a highly enantioselective hydrosilylation of ynones,a type of carbonyl-activated alkynes,using a palladium catalyst with a chiral binaphthyl phosphoramidite ligand.The stereospecific hydrosilylation of ynones affords a series of silicon-stereogenic silylenones with up to 94%yield,>20:1 regioselectivity and 98:2 enantioselectivity.The density functional theory(DFT)calculations were conducted to elucidate the reaction mechanism and origin of high degree of stereoselectivity,in which the powerful potential of aromatic interaction in this reaction is highlighted by the multiple C–H-πinteraction and aromatic cavity-oriented enantioselectivitydetermining step during desymmetric functionalization of Si–H bond.展开更多
Vinyl acetate radical emulsion polymerization in water with GF51 silane co-monomer was performed by semi continuous way. The GF51 impacts on dispersion rheology as well on films and bonding strength properties were de...Vinyl acetate radical emulsion polymerization in water with GF51 silane co-monomer was performed by semi continuous way. The GF51 impacts on dispersion rheology as well on films and bonding strength properties were determined. It should be stated that even low quantities of GF51 (up to 6% from VAc) determined high viscosity of dispersions. The GF51 modified films have low water absorption and high affinity to glass. Molecular mass and thermal properties of GF51 modified polymers were determined accordingly.展开更多
基金This work was supported by the National Natural Science Foundation of China(21773051,22072035,21703051,21801056,21901056)Zhejiang Provincial Natural Science Foundation of China(LZ18B020001,LY18B020013,LQ19B040001).
文摘Hydrosilylation is one of the most important reactions in synthetic chemistry and ranks as a fundamental method to access organosilicon compounds in industrial and academic processes.However,the enantioselective construction of chiral-at-silicon compounds via catalytic asymmetric hydrosilylation remained limited and difficult.Here we report a highly enantioselective hydrosilylation of ynones,a type of carbonyl-activated alkynes,using a palladium catalyst with a chiral binaphthyl phosphoramidite ligand.The stereospecific hydrosilylation of ynones affords a series of silicon-stereogenic silylenones with up to 94%yield,>20:1 regioselectivity and 98:2 enantioselectivity.The density functional theory(DFT)calculations were conducted to elucidate the reaction mechanism and origin of high degree of stereoselectivity,in which the powerful potential of aromatic interaction in this reaction is highlighted by the multiple C–H-πinteraction and aromatic cavity-oriented enantioselectivitydetermining step during desymmetric functionalization of Si–H bond.
文摘Vinyl acetate radical emulsion polymerization in water with GF51 silane co-monomer was performed by semi continuous way. The GF51 impacts on dispersion rheology as well on films and bonding strength properties were determined. It should be stated that even low quantities of GF51 (up to 6% from VAc) determined high viscosity of dispersions. The GF51 modified films have low water absorption and high affinity to glass. Molecular mass and thermal properties of GF51 modified polymers were determined accordingly.