A virtual battery(VB)provides a succinct interface for aggregating distributed storage-like resources(SLR)to interact with a utility-level system.To overcome the drawbacks of existing VB models,including conservatism ...A virtual battery(VB)provides a succinct interface for aggregating distributed storage-like resources(SLR)to interact with a utility-level system.To overcome the drawbacks of existing VB models,including conservatism and neglecting network constraints,this paper optimizes the power and energy parameters of VB to enlarge its flexibility region.An optimal VB is identified by a robust optimization problem with decision-dependent uncertainty.An algorithm based on the Benders decomposition is developed to solve this problem.The proposed method yields the largest VB satisfying constraints of both network and SLRs.Case studies verify the superiority of the optimal VB in terms of security guarantee and less conservatism.展开更多
To be able to schedule the charging demand of an electric vehicle fleet using smart charging,insight is required into different charging session characteristics of the considered fleet,including the number of charging...To be able to schedule the charging demand of an electric vehicle fleet using smart charging,insight is required into different charging session characteristics of the considered fleet,including the number of charging sessions,their charging demand and arrival and departure times.The use of forecasting techniques can reduce the uncertainty about these charging session characteristics,but since these characteristics are interrelated,this is not straightforward.Remarkably,forecasting frameworks that cover all required characteristics to schedule the charging of an electric vehicle fleet are absent in scientific literature.To cover this gap,this study proposes a novel approach for forecasting the charging requirements of an electric vehicle fleet,which can be used as input to schedule their aggregated charging demand.In the first step of this approach,the charging session characteristics of an electric vehicle fleet are translated to three parameter values that describe a virtual battery.Subsequently,optimal predictor variable and hyperparameter sets are determined.These serve as input for the last step,in which the virtual battery parameter values are forecasted.The approach has been tested on a real-world case study of public charging stations,considering a high number of predictor variables and different forecasting models(Multivariate Linear Regression,Random Forest,Artificial Neural Network and k-Nearest Neighbors).The results show that the different virtual battery parameters can be forecasted with high accuracy,reaching R^(2) scores up to 0.98 when considering 400 charging stations.In addition,the results indicate that the forecasting performance of all considered models is somehow similar and that only a low number of predictor variables are required to adequately forecast aggregated electric vehicle charging characteristics.展开更多
基金supported by the Science and Technology Institute of China Three Gorges Corporation under Grant 202103386.
文摘A virtual battery(VB)provides a succinct interface for aggregating distributed storage-like resources(SLR)to interact with a utility-level system.To overcome the drawbacks of existing VB models,including conservatism and neglecting network constraints,this paper optimizes the power and energy parameters of VB to enlarge its flexibility region.An optimal VB is identified by a robust optimization problem with decision-dependent uncertainty.An algorithm based on the Benders decomposition is developed to solve this problem.The proposed method yields the largest VB satisfying constraints of both network and SLRs.Case studies verify the superiority of the optimal VB in terms of security guarantee and less conservatism.
文摘To be able to schedule the charging demand of an electric vehicle fleet using smart charging,insight is required into different charging session characteristics of the considered fleet,including the number of charging sessions,their charging demand and arrival and departure times.The use of forecasting techniques can reduce the uncertainty about these charging session characteristics,but since these characteristics are interrelated,this is not straightforward.Remarkably,forecasting frameworks that cover all required characteristics to schedule the charging of an electric vehicle fleet are absent in scientific literature.To cover this gap,this study proposes a novel approach for forecasting the charging requirements of an electric vehicle fleet,which can be used as input to schedule their aggregated charging demand.In the first step of this approach,the charging session characteristics of an electric vehicle fleet are translated to three parameter values that describe a virtual battery.Subsequently,optimal predictor variable and hyperparameter sets are determined.These serve as input for the last step,in which the virtual battery parameter values are forecasted.The approach has been tested on a real-world case study of public charging stations,considering a high number of predictor variables and different forecasting models(Multivariate Linear Regression,Random Forest,Artificial Neural Network and k-Nearest Neighbors).The results show that the different virtual battery parameters can be forecasted with high accuracy,reaching R^(2) scores up to 0.98 when considering 400 charging stations.In addition,the results indicate that the forecasting performance of all considered models is somehow similar and that only a low number of predictor variables are required to adequately forecast aggregated electric vehicle charging characteristics.