With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many p...With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application.展开更多
The COVID-19 pandemic has affected the educational systems worldwide,leading to the near-total closures of schools,universities,and colleges.Universities need to adapt to changes to face this crisis without negatively...The COVID-19 pandemic has affected the educational systems worldwide,leading to the near-total closures of schools,universities,and colleges.Universities need to adapt to changes to face this crisis without negatively affecting students’performance.Accordingly,the purpose of this study is to identify and help solve to critical challenges and factors that influence the e-learning system for Computer Maintenance courses during the COVID-19 pandemic.The paper examines the effect of a hybrid modeling approach that uses Cloud Computing Services(CCS)and Virtual Reality(VR)in a Virtual Cloud Learning Environment(VCLE)system.The VCLE system provides students with various utilities and educational services such as presentation slides/text,data sharing,assignments,quizzes/tests,and chatrooms.In addition,learning through VR enables the students to simulate physical presence,and they respond well to VR environments that are closer to reality as they feel that they are an integral part of the environment.Also,the research presents a rubric assessment that the students can use to reflect on the skills they used during the course.The research findings offer useful suggestions for enabling students to become acquainted with the proposed system’s usage,especially during theCOVID-19 pandemic,and for improving student achievementmore than the traditional methods of learning.展开更多
The sensitive data stored in the public cloud by privileged users,such as corporate companies and government agencies are highly vulnerable in the hands of cloud providers and hackers.The proposed Virtual Cloud Storag...The sensitive data stored in the public cloud by privileged users,such as corporate companies and government agencies are highly vulnerable in the hands of cloud providers and hackers.The proposed Virtual Cloud Storage Archi-tecture is primarily concerned with data integrity and confidentiality,as well as availability.To provide confidentiality and availability,thefile to be stored in cloud storage should be encrypted using an auto-generated key and then encoded into distinct chunks.Hashing the encoded chunks ensured thefile integrity,and a newly proposed Circular Shift Chunk Allocation technique was used to determine the order of chunk storage.Thefile could be retrieved by performing the opera-tions in reverse.Using the regenerating code,the model could regenerate the missing and corrupted chunks from the cloud.The proposed architecture adds an extra layer of security while maintaining a reasonable response time and sto-rage capacity.Experimental results analysis show that the proposed model has been tested with storage space and response time for storage and retrieval.The VCSA model consumes 1.5x(150%)storage space.It was found that total storage required for the VCSA model is very low when compared with 2x Replication and completely satisfies the CIA model.The response time VCSA model was tested with different sizedfiles starting from 2 to 16 MB.The response time for storing and retrieving a 2 MBfile is 4.96 and 3.77 s respectively,and for a 16 MBfile,the response times are 11.06 s for storage and 5.6 s for retrieval.展开更多
Cloud computing has been widely adopted by enterprises because of its on-demand and elastic resource usage paradigm. Currently most cloud applications are running on one single cloud. However, more and more applicatio...Cloud computing has been widely adopted by enterprises because of its on-demand and elastic resource usage paradigm. Currently most cloud applications are running on one single cloud. However, more and more applications demand to run across several clouds to satisfy the requirements like best cost efficiency, avoidance of vender lock-in, and geolocation sensitive service. JointCloud computing is a new research initiated by Chinese institutes to address the computing issues concerned with multiple clouds. In JointCloud, users' diverse and dynamic requirements on cloud resources axe satisfied by providing users virtual cloud (VC) for special purposes. A virtual cloud for special purposes is in essence a user's specific cloud working environment having the customized software stacks, configurations and computing resources readily available. This paper first introduces what is JointCloud computing and then describes the design rationales, motivation examples, mechanisms and enabling technologies of VC in JointCloud.展开更多
In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce ene...In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.展开更多
Cloud computing is a new computing model. The resource monitoring tools are immature compared to traditional distributed computing and grid computing. In order to better monitor the virtual resource in cloud computing...Cloud computing is a new computing model. The resource monitoring tools are immature compared to traditional distributed computing and grid computing. In order to better monitor the virtual resource in cloud computing, a periodically and event-driven push (PEP) monitoring model is proposed. Taking advantage of the push and event-driven mechanism, the model can provide comparatively adequate information about usage and status of the resources. It can simplify the communication between Master and Work Nodes without missing the important issues happened during the push interval. Besides, we develop "mon" to make up for the deficiency of Libvirt in monitoring of virtual CPU and memory.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed...This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.展开更多
The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. T...The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. There are multi types of security challenge must be understood and countermeasures. One of the major security challenges is resources of the cloud computing infrastructures are provided as services over the Internet, and entire data in the cloud computing are reside over network resources, that enables the data to be access through VMs. In this work, we describe security techniques for securing a VCCI, VMMs such as Encryption and Key Management (EKM), Access Control Mechanisms (ACMs), Virtual Trusted Platform Module (vTPM), Virtual Firewall (VF), and Trusted Virtual Domains (TVDs). In this paper we focus on security of virtual resources in Virtualized Cloud Computing Infrastructure (VCCI), Virtual Machine Monitor (VMM) by describing types of attacks on VCCI, and vulnerabilities of VMMs and we describe the techniques for securing a VCCI.展开更多
With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and im...With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.展开更多
With the rapid development of social,science and technology ,we are always looking for the advanced and rapid manufacturing method and the management pattern.thus a new enterprise cooperation pattern-Virtual Enterpris...With the rapid development of social,science and technology ,we are always looking for the advanced and rapid manufacturing method and the management pattern.thus a new enterprise cooperation pattern-Virtual Enterprise arises at the historic moment. The cooperation is a process which advantages the temporary enterprise resources each other. Therefore, the virtual enterprise must encounter the problem that how to realize the virtual enterprises’ information resources sharing and improve the efficiency of enterprise cooperation. This paper uses the cloud computing’s advantage to solve the problem of virtual enterprise information resources sharing. Then enterprise is able to share the information of different regions,different computing environment and improve the efficiency of virtual enterprise cooperation.展开更多
Based on the analysis of the security problems existing in the cloud platform of the data center, this paper proposes a set of cloud platform security protection scheme being with virtualization technology. This paper...Based on the analysis of the security problems existing in the cloud platform of the data center, this paper proposes a set of cloud platform security protection scheme being with virtualization technology. This paper focuses on the overall architecture of cloud platform as well as the design of virtualization security architecture. Meantime, it introduces the key technologies of VXLAN in detail. The scheme realizes flexible scheduling of security resources through virtual pooling of independent security gateway and virtual machine isolation through VXLAN technology. Moreover, it guides all horizontal traffic to independent security gateway for processing, unified management of security gateway through cloud platform by using Huawei NSH business chain technology. This scheme effectively solves the horizontal transmission of security threat among virtual machines, and realizes the fine security control and protection for the campus data center.展开更多
Online Education (OE) system is an effective and efficient way to perform the education in all sectors of government and non-government educational organization. Low performance and minimum speed are major overhead in...Online Education (OE) system is an effective and efficient way to perform the education in all sectors of government and non-government educational organization. Low performance and minimum speed are major overhead in the current ongoing OE system due to the increase of users and some system issues. Base on the previous study and recent practical issues, a model is proposed to Enhancing the Performance of Online Education System (EPOES) to examine the bare metal virtualization, isolation and virtual machine templates. Bare metal virtualization has led the native execution, isolation isolated the running application and Virtual Machine Template has help to increase efficiency, avoiding the repetitive installation and operate the server in less time. The proposed model boosts the performance of the current OE system, and examines the benefits of the adaptation of cloud computing and virtualization which can be used to overcome the existing challenges and barriers of the current OE System.展开更多
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o...Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.展开更多
Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network b...Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network bandwidth, and battery capacity in a mobile phone. While applications can be redesigned with client-server models to benefit from cloud services, users are no longer in full control of the application. This is also a serious concern. We propose an innovative framework for executing mobile applications in a virfualized cloud environment. With encryption and isolation, this environment is controlled by the user and protected against eavesdropping from cloud providers. We have developed efficient schemes for migrating applications and synchronizing data between execution environments. Performance and power issues within a virtualized execution environment are also addressed using power saving and scheduling techniques that enable automatic, seamless application migration.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and m...To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and medium sized enterprises being typically not able to operate a vast staff of cloud service and IT experts. Actual state of the art cloud service design does not systematically deal with how to define, deploy and operate cross-platform capable cloud services. This is mainly due to inherent complexity of the field and differences in details between a plenty of existing public and private cloud infrastructures. One way to handle this complexity is to restrict cloud service design to a common subset of commodity features provided by existing public and private cloud infrastructures. Nevertheless these restrictions raise new service design questions and have to be answered in ongoing research in a pragmatic manner regarding the limited IT-operation capabilities of small and medium sized enterprises. By simplifying and harmonizing the use of cloud infrastructures using lightweight virtualization approaches, the transfer of cloud deployments between a variety of cloud service providers will become possible. This article will discuss several aspects like high availability, secure communication, elastic service design, transferability of services and formal descriptions of service deployments which have to be addressed and are investigated by our ongoing research.展开更多
基金ACKNOWLEDGEMENTS This work was supported by the Research Fund for the Doctoral Program of Higher Education of China (No.20110031110026 and No.20120031110035), the National Natural Science Foundation of China (No. 61103214), and the Key Project in Tianjin Science & Technology Pillar Program (No. 13ZCZDGX01098).
文摘With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application.
文摘The COVID-19 pandemic has affected the educational systems worldwide,leading to the near-total closures of schools,universities,and colleges.Universities need to adapt to changes to face this crisis without negatively affecting students’performance.Accordingly,the purpose of this study is to identify and help solve to critical challenges and factors that influence the e-learning system for Computer Maintenance courses during the COVID-19 pandemic.The paper examines the effect of a hybrid modeling approach that uses Cloud Computing Services(CCS)and Virtual Reality(VR)in a Virtual Cloud Learning Environment(VCLE)system.The VCLE system provides students with various utilities and educational services such as presentation slides/text,data sharing,assignments,quizzes/tests,and chatrooms.In addition,learning through VR enables the students to simulate physical presence,and they respond well to VR environments that are closer to reality as they feel that they are an integral part of the environment.Also,the research presents a rubric assessment that the students can use to reflect on the skills they used during the course.The research findings offer useful suggestions for enabling students to become acquainted with the proposed system’s usage,especially during theCOVID-19 pandemic,and for improving student achievementmore than the traditional methods of learning.
文摘The sensitive data stored in the public cloud by privileged users,such as corporate companies and government agencies are highly vulnerable in the hands of cloud providers and hackers.The proposed Virtual Cloud Storage Archi-tecture is primarily concerned with data integrity and confidentiality,as well as availability.To provide confidentiality and availability,thefile to be stored in cloud storage should be encrypted using an auto-generated key and then encoded into distinct chunks.Hashing the encoded chunks ensured thefile integrity,and a newly proposed Circular Shift Chunk Allocation technique was used to determine the order of chunk storage.Thefile could be retrieved by performing the opera-tions in reverse.Using the regenerating code,the model could regenerate the missing and corrupted chunks from the cloud.The proposed architecture adds an extra layer of security while maintaining a reasonable response time and sto-rage capacity.Experimental results analysis show that the proposed model has been tested with storage space and response time for storage and retrieval.The VCSA model consumes 1.5x(150%)storage space.It was found that total storage required for the VCSA model is very low when compared with 2x Replication and completely satisfies the CIA model.The response time VCSA model was tested with different sizedfiles starting from 2 to 16 MB.The response time for storing and retrieving a 2 MBfile is 4.96 and 3.77 s respectively,and for a 16 MBfile,the response times are 11.06 s for storage and 5.6 s for retrieval.
基金This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000105 and the National Natural Science Foundation of China under Grant Nos. 61272154 and 61421091.
文摘Cloud computing has been widely adopted by enterprises because of its on-demand and elastic resource usage paradigm. Currently most cloud applications are running on one single cloud. However, more and more applications demand to run across several clouds to satisfy the requirements like best cost efficiency, avoidance of vender lock-in, and geolocation sensitive service. JointCloud computing is a new research initiated by Chinese institutes to address the computing issues concerned with multiple clouds. In JointCloud, users' diverse and dynamic requirements on cloud resources axe satisfied by providing users virtual cloud (VC) for special purposes. A virtual cloud for special purposes is in essence a user's specific cloud working environment having the customized software stacks, configurations and computing resources readily available. This paper first introduces what is JointCloud computing and then describes the design rationales, motivation examples, mechanisms and enabling technologies of VC in JointCloud.
基金supported by the National Natural Science Foundation of China(61002011)the National High Technology Research and Development Program of China(863 Program)(2013AA013303)+1 种基金the Fundamental Research Funds for the Central Universities(2013RC1104)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)
文摘In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.
基金Project supported by the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Ph D Programs Foundation of Ministry of Education of China(Grant No.200802800007)+1 种基金the Key Laboratory of Computer System and Architecture(Institute of Computing Technology,Chinese Academy of Sciences)the Innovation Project of Shanghai Municipal Education Commission(Grant No.11YZ09)
文摘Cloud computing is a new computing model. The resource monitoring tools are immature compared to traditional distributed computing and grid computing. In order to better monitor the virtual resource in cloud computing, a periodically and event-driven push (PEP) monitoring model is proposed. Taking advantage of the push and event-driven mechanism, the model can provide comparatively adequate information about usage and status of the resources. It can simplify the communication between Master and Work Nodes without missing the important issues happened during the push interval. Besides, we develop "mon" to make up for the deficiency of Libvirt in monitoring of virtual CPU and memory.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金supported by The National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201+4 种基金the Scientific Research Key Project of Beijing Municipal Commission of Education under Grant No.KZ201210015015Project Supported by the National Natural Science Foundation of China(Grant No.61370140)the Scientific Research Common Program of the Beijing Municipal Commission of Education(Grant No.KMKM201410015006)The National Science Foundation of China under Grant Nos.61232016 and U1405254and the PAPD fund
文摘This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.
文摘The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. There are multi types of security challenge must be understood and countermeasures. One of the major security challenges is resources of the cloud computing infrastructures are provided as services over the Internet, and entire data in the cloud computing are reside over network resources, that enables the data to be access through VMs. In this work, we describe security techniques for securing a VCCI, VMMs such as Encryption and Key Management (EKM), Access Control Mechanisms (ACMs), Virtual Trusted Platform Module (vTPM), Virtual Firewall (VF), and Trusted Virtual Domains (TVDs). In this paper we focus on security of virtual resources in Virtualized Cloud Computing Infrastructure (VCCI), Virtual Machine Monitor (VMM) by describing types of attacks on VCCI, and vulnerabilities of VMMs and we describe the techniques for securing a VCCI.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019)the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZJ010)the Special Support Program of Guangdong Province (201528004)the Pearl River Science & Technology Star Project (201610010046)
文摘With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.
文摘With the rapid development of social,science and technology ,we are always looking for the advanced and rapid manufacturing method and the management pattern.thus a new enterprise cooperation pattern-Virtual Enterprise arises at the historic moment. The cooperation is a process which advantages the temporary enterprise resources each other. Therefore, the virtual enterprise must encounter the problem that how to realize the virtual enterprises’ information resources sharing and improve the efficiency of enterprise cooperation. This paper uses the cloud computing’s advantage to solve the problem of virtual enterprise information resources sharing. Then enterprise is able to share the information of different regions,different computing environment and improve the efficiency of virtual enterprise cooperation.
文摘Based on the analysis of the security problems existing in the cloud platform of the data center, this paper proposes a set of cloud platform security protection scheme being with virtualization technology. This paper focuses on the overall architecture of cloud platform as well as the design of virtualization security architecture. Meantime, it introduces the key technologies of VXLAN in detail. The scheme realizes flexible scheduling of security resources through virtual pooling of independent security gateway and virtual machine isolation through VXLAN technology. Moreover, it guides all horizontal traffic to independent security gateway for processing, unified management of security gateway through cloud platform by using Huawei NSH business chain technology. This scheme effectively solves the horizontal transmission of security threat among virtual machines, and realizes the fine security control and protection for the campus data center.
文摘Online Education (OE) system is an effective and efficient way to perform the education in all sectors of government and non-government educational organization. Low performance and minimum speed are major overhead in the current ongoing OE system due to the increase of users and some system issues. Base on the previous study and recent practical issues, a model is proposed to Enhancing the Performance of Online Education System (EPOES) to examine the bare metal virtualization, isolation and virtual machine templates. Bare metal virtualization has led the native execution, isolation isolated the running application and Virtual Machine Template has help to increase efficiency, avoiding the repetitive installation and operate the server in less time. The proposed model boosts the performance of the current OE system, and examines the benefits of the adaptation of cloud computing and virtualization which can be used to overcome the existing challenges and barriers of the current OE System.
基金supported by the National Natural Science Foundation of China(6120235461272422)the Scientific and Technological Support Project(Industry)of Jiangsu Province(BE2011189)
文摘Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time.
基金supported in part by a grant from the National Science Council under No. 98-2220-E-002-020, 99-2220-E-002-026, and 95-2221-E-002-098-MY3
文摘Smartphones and cloud computing technologies have enabled the development of sophisticated mobile applications. Still, many of these applications do not perform well due to limited computation, data storage, network bandwidth, and battery capacity in a mobile phone. While applications can be redesigned with client-server models to benefit from cloud services, users are no longer in full control of the application. This is also a serious concern. We propose an innovative framework for executing mobile applications in a virfualized cloud environment. With encryption and isolation, this environment is controlled by the user and protected against eavesdropping from cloud providers. We have developed efficient schemes for migrating applications and synchronizing data between execution environments. Performance and power issues within a virtualized execution environment are also addressed using power saving and scheduling techniques that enable automatic, seamless application migration.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
文摘To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and medium sized enterprises being typically not able to operate a vast staff of cloud service and IT experts. Actual state of the art cloud service design does not systematically deal with how to define, deploy and operate cross-platform capable cloud services. This is mainly due to inherent complexity of the field and differences in details between a plenty of existing public and private cloud infrastructures. One way to handle this complexity is to restrict cloud service design to a common subset of commodity features provided by existing public and private cloud infrastructures. Nevertheless these restrictions raise new service design questions and have to be answered in ongoing research in a pragmatic manner regarding the limited IT-operation capabilities of small and medium sized enterprises. By simplifying and harmonizing the use of cloud infrastructures using lightweight virtualization approaches, the transfer of cloud deployments between a variety of cloud service providers will become possible. This article will discuss several aspects like high availability, secure communication, elastic service design, transferability of services and formal descriptions of service deployments which have to be addressed and are investigated by our ongoing research.