In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed...This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.展开更多
With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and im...With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
Virtualization technology plays a key role in cloud computing.Thus,the security issues of virtualization tools(hypervisors,emulators,etc.) should be under precise consideration.However,threats of insider attacks are...Virtualization technology plays a key role in cloud computing.Thus,the security issues of virtualization tools(hypervisors,emulators,etc.) should be under precise consideration.However,threats of insider attacks are underestimated.The virtualization tools and hypervisors have been poorly protected from this type of attacks.Furthermore,hypervisor is one of the most critical elements in cloud computing infrastructure.Firstly,hypervisor vulnerabilities analysis is provided.Secondly,a formal model of insider attack on hypervisor is developed.Consequently,on the basis of the formal attack model,we propose a new methodology of hypervisor stability evaluation.In this paper,certain security countermeasures are considered that should be integrated in hypervisor software architecture.展开更多
Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application de...Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application deployment remains an important issue in clouds. Appropriate scheduling mechanisms can shorten the total completion time of an application and therefore improve the quality of service(QoS) for cloud users. Unlike current scheduling algorithms which mostly focus on single task allocation, we propose a deadline based scheduling approach for data-intensive applications in clouds. It does not simply consider the total completion time of an application as the sum of all its subtasks' completion time. Not only the computation capacity of virtual machine(VM) is considered, but also the communication delay and data access latencies are taken into account. Simulations show that our proposed approach has a decided advantage over the two other algorithms.展开更多
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
基金supported by The National Natural Science Foundation for Young Scientists of China under Grant No.61303263the Jiangsu Provincial Research Foundation for Basic Research(Natural Science Foundation)under Grant No.BK20150201+4 种基金the Scientific Research Key Project of Beijing Municipal Commission of Education under Grant No.KZ201210015015Project Supported by the National Natural Science Foundation of China(Grant No.61370140)the Scientific Research Common Program of the Beijing Municipal Commission of Education(Grant No.KMKM201410015006)The National Science Foundation of China under Grant Nos.61232016 and U1405254and the PAPD fund
文摘This paper sums up four security factors after analyzing co-residency threats caused by the special multitenant environment in the cloud.To secure the factors,a multiway dynamic trust chain transfer model was proposed on the basis of a measurement interactive virtual machine and current behavior to protect the integrity of the system.A trust chain construction module is designed in a virtual machine monitor.Through dynamic monitoring,it achieves the purpose of transferring integrity between virtual machine.A cloud system with a trust authentication function is implemented on the basis of the model,and its practicability is shown.
基金supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019)the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012)+2 种基金the Fundamental Research Funds for the Central Universities (2015ZJ010)the Special Support Program of Guangdong Province (201528004)the Pearl River Science & Technology Star Project (201610010046)
文摘With the advent of the era of cloud computing, the high energy consumption of cloud computing data centers has become a prominent problem, and how to reduce the energy consumption of cloud computing data center and improve the efficiency of data center has become the research focus of researchers all the world. In a cloud environment, virtual machine consolidation(VMC) is an effective strategy that can improve the energy efficiency. However, at the same time, in the process of virtual machine consolidation, we need to deal with the tradeoff between energy consumption and excellent service performance to meet service level agreement(SLA). In this paper, we propose a new virtual machine consolidation framework for achieving better energy efficiency-Improved Underloaded Decision(IUD) algorithm and Minimum Average Utilization Difference(MAUD) algorithm. Finally, based on real workload data on Planet Lab, experiments have been done with the cloud simulation platform Cloud Sim. The experimental result shows that the proposed algorithm can reduce the energy consumption and SLA violation of data centers compared with existing algorithms, improving the energy efficiency of data centers.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
文摘Virtualization technology plays a key role in cloud computing.Thus,the security issues of virtualization tools(hypervisors,emulators,etc.) should be under precise consideration.However,threats of insider attacks are underestimated.The virtualization tools and hypervisors have been poorly protected from this type of attacks.Furthermore,hypervisor is one of the most critical elements in cloud computing infrastructure.Firstly,hypervisor vulnerabilities analysis is provided.Secondly,a formal model of insider attack on hypervisor is developed.Consequently,on the basis of the formal attack model,we propose a new methodology of hypervisor stability evaluation.In this paper,certain security countermeasures are considered that should be integrated in hypervisor software architecture.
基金supported by the National Natural Science Foundation of China (51507084)the NUPTSF (NY214203)the Natural Science Foundation for Colleges and Universities in Jiangsu Province (14KJB120009)
文摘Cloud computing emerges as a new computing pattern that can provide elastic services for any users around the world. It provides good chances to solve large scale scientific problems with fewer efforts. Application deployment remains an important issue in clouds. Appropriate scheduling mechanisms can shorten the total completion time of an application and therefore improve the quality of service(QoS) for cloud users. Unlike current scheduling algorithms which mostly focus on single task allocation, we propose a deadline based scheduling approach for data-intensive applications in clouds. It does not simply consider the total completion time of an application as the sum of all its subtasks' completion time. Not only the computation capacity of virtual machine(VM) is considered, but also the communication delay and data access latencies are taken into account. Simulations show that our proposed approach has a decided advantage over the two other algorithms.