期刊文献+
共找到2,739篇文章
< 1 2 137 >
每页显示 20 50 100
Diagnostic efficacy of virtual organ computer-assisted analysis in measuring the volume ratio of subchorionic hematoma with serum progesterone
1
作者 Lin-Ling Shen Jing Shi +2 位作者 Chang-Wei Ding Gao-Le Dai Qi Ma 《World Journal of Clinical Cases》 SCIE 2024年第17期3053-3060,共8页
BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcome... BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcomes such as miscarriage,preterm birth,and other complications.Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes.AIM To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis(VOCAL)in measuring the volume ratio of SCH to gestational sac(GS)combined with serum progesterone on early pregnancy outcomes in patients with SCH.METHODS A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled.All patients were followed up until a gestational age of 20 wk.The parameters of transvaginal two-dimensional ultrasound,including the circumference of SCH(Cs),surface area of SCH(Ss),circumference of GS(Cg),and surface area of GS(Sg),and the parameters of VOCAL with transvaginal three-dimensional ultrasound,including the three-dimensional volume of SCH(3DVs)and GS(3DVg),were recorded.The size of the SCH and its ratio to the GS size(Cs/Cg,Ss/Sg,3DVs/3DVg)were recorded and compared.RESULTS Compared with those in the normal pregnancy group,the adverse pregnancy group had higher Cs/Cg,Ss/Sg,and 3DVs/3DVg ratios(P<0.05).When 3DVs/3DVg was 0.220,the highest predictive performance predicted adverse pregnancy outcomes,resulting in an AUC of 0.767,and the sensitivity,specificity were 70.2%,75%respectively.VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients,with a high sensitivity of 82.1%and a specificity of 72.1%,which showed a significant difference between AUC.CONCLUSION VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH,while combined serum progesterone better predicts adverse pregnancy outcomes. 展开更多
关键词 Subchorionic hematoma virtual organ computer-assisted analysis Gestational sac Serum progesterone Ultrasound parameters Adverse pregnancy outcomes
下载PDF
Mental health in the virtual world:Challenges and opportunities in the metaverse era 被引量:1
2
作者 Yolanda López del Hoyo Matilde Elices Javier Garcia-Campayo 《World Journal of Clinical Cases》 SCIE 2024年第17期2939-2945,共7页
Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementat... Current rates of mental illness are worrisome.Mental illness mainly affects females and younger age groups.The use of the internet to deliver mental health care has been growing since 2020 and includes the implementation of novel mental health treatments using virtual reality,augmented reality,and artificial intelligence.A new three dimensional digital environment,known as the metaverse,has emerged as the next version of the Internet.Artificial intelligence,augmented reality,and virtual reality will create fully immersive,experiential,and interactive online environments in the metaverse.People will use a unique avatar to do anything they do in their“real”lives,including seeking and receiving mental health care.In this opinion review,we reflect on how the metaverse could reshape how we deliver mental health treatment,its opportunities,and its challenges. 展开更多
关键词 Metaverse virtual world Artificial intelligence Mental health virtual reality Augmented reality TECHNOLOGY
下载PDF
Spatial Heterogeneity of Embedded Water Consumption from the Perspective of Virtual Water Surplus and Deficit in the Yellow River Basin,China
3
作者 MA Weijing LI Xiangjie +1 位作者 KOU Jingwen LI Chengyi 《Chinese Geographical Science》 SCIE CSCD 2024年第2期311-326,共16页
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i... Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity. 展开更多
关键词 virtual water trade(VWT) input-output model(MRIO) virtual water surplus virtual water deficit Yellow River Basin China
下载PDF
Wear dependent virtual flow rate sensor for progressing cavity pumps with deformable stator
4
作者 Jens Müller Sebastian Leonow +2 位作者 Johannes Schulz Christian Hansen Martin Monnigmann 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1346-1353,共8页
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m... This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation. 展开更多
关键词 BACKFLOW Progressing cavity pump virtual sensor WEAR
下载PDF
A virtual thermometer for ultrahigh-temperature-pressure experiments in a large-volume press
5
作者 Bingtao Feng Longjian Xie +8 位作者 Xuyuan Hou Shucheng Liu Luyao Chen Xinyu Zhao Chenyi Li Qiang Zhou Kuo Hu Zhaodong Liu Bingbing Liu 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期98-110,共13页
Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter.The recent development of boron-doped diamond(BDD)heaters has made such melting experiments possi... Ultrahigh-temperature-pressure experiments are crucial for understanding the physical and chemical properties of matter.The recent development of boron-doped diamond(BDD)heaters has made such melting experiments possible in large-volume presses.However,estimates of temperatures above 2600 K and of the temperature distributions inside BDD heaters are not well constrained,owing to the lack of a suitable thermometer.Here,we establish a three-dimensional finite element model as a virtual thermometer to estimate the temperature and temperature field above 2600 K.The advantage of this virtual thermometer over those proposed in previous studies is that it considers both alternating and direct current heating modes,the actual sizes of cell assemblies after compression,the effects of the electrode,thermocouple and anvil,and the heat dissipation by the pressure-transmitting medium.The virtual thermometer reproduces the power-temperature relationships of ultrahigh-temperature-pressure experiments below 2600 K at press loads of 2.8-7.9 MN(~19 to 28 GPa)within experimental uncertainties.The temperatures above 2600 K predicted by our virtual thermometer are within the uncertainty of those extrapolated from power-temperature relationships below 2600 K.Furthermore,our model shows that the temperature distribution inside a BDD heater(19-26 K/mm along the radial direction and<83 K/mm along the longitudinal direction)is more homogeneous than those inside conventional heaters such as graphite or LaCrO_(3) heaters(100-200 K/mm).Our study thus provides a reliable virtual thermometer for ultrahigh-temperature experiments using BDD heaters in Earth and material sciences. 展开更多
关键词 virtual ultrahigh SIZES
下载PDF
Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
6
作者 严晨皓 汤雪逸 +4 位作者 王时光 孟李皎悦 孙海媛 何奕彬 王力军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期268-276,共9页
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc... Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency. 展开更多
关键词 Einstein synchronization satellite virtual clock geosynchronous satellite carrier phase
下载PDF
Effects of virtual agents on interaction efficiency and environmental immersion in MR environments
7
作者 Yihua BAO Jie GUO +2 位作者 Dongdong WENG Yue LIU Zeyu TIAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期169-179,共11页
Background Physical entity interactions in mixed reality(MR)environments aim to harness human capabilities in manipulating physical objects,thereby enhancing virtual environment(VEs)functionality.In MR,a common strate... Background Physical entity interactions in mixed reality(MR)environments aim to harness human capabilities in manipulating physical objects,thereby enhancing virtual environment(VEs)functionality.In MR,a common strategy is to use virtual agents as substitutes for physical entities,balancing interaction efficiency with environmental immersion.However,the impact of virtual agent size and form on interaction performance remains unclear.Methods Two experiments were conducted to explore how virtual agent size and form affect interaction performance,immersion,and preference in MR environments.The first experiment assessed five virtual agent sizes(25%,50%,75%,100%,and 125%of physical size).The second experiment tested four types of frames(no frame,consistent frame,half frame,and surrounding frame)across all agent sizes.Participants,utilizing a head mounted display,performed tasks involving moving cups,typing words,and using a mouse.They completed questionnaires assessing aspects such as the virtual environment effects,interaction effects,collision concerns,and preferences.Results Results from the first experiment revealed that agents matching physical object size produced the best overall performance.The second experiment demonstrated that consistent framing notably enhances interaction accuracy and speed but reduces immersion.To balance efficiency and immersion,frameless agents matching physical object sizes were deemed optimal.Conclusions Virtual agents matching physical entity sizes enhance user experience and interaction performance.Conversely,familiar frames from 2D interfaces detrimentally affect interaction and immersion in virtual spaces.This study provides valuable insights for the future development of MR systems. 展开更多
关键词 Mixed reality virtual agents Interaction performance Environmental immersion virtual environments
下载PDF
Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
8
作者 Yuqiang Ding Zhenyi Luo +1 位作者 Garimagai Borjigin Shin-Tson Wu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期4-14,共11页
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t... A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption. 展开更多
关键词 near-eye display virtual reality pancake optics folded optics nonreciprocal polarization rotator
下载PDF
Virtual Power Plants for Grid Resilience: A Concise Overview of Research and Applications
9
作者 Yijing Xie Yichen Zhang +2 位作者 Wei-Jen Lee Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期329-343,共15页
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng... The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience. 展开更多
关键词 Climate change renewable energy resources RESILIENCE smart grids virtual power plants(VPPs)
下载PDF
An impact sensitivity assessment method of spacecraft based on virtual exterior wall
10
作者 Runqiang Chi Yuyan Liu +1 位作者 Diqi Hu Baojun Pang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期142-157,共16页
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft... The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft. 展开更多
关键词 Sensitivity OD/M SPACECRAFT virtual exterior wall
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning
11
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing virtual sample generation Particle swarm optimization Machine learning Graphical user interface
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
12
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
Permanent Magnet Temperature Estimation for PMSMs Using Virtual Position-offset Injection
13
作者 Beichen Ding Yuting Lu +2 位作者 Kaide Huang Guodong Feng Chunyan Lai 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期51-60,共10页
This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is math... This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions. 展开更多
关键词 PMSM Magnet temperature estimation virtual position offset injection Inverter nonlinearity
下载PDF
Light-Activated Virtual Sensor Array with Machine Learning for Non-Invasive Diagnosis of Coronary Heart Disease
14
作者 Jiawang Hu Hao Qian +2 位作者 Sanyang Han Ping Zhang Yuan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期427-448,共22页
Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an... Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios. 展开更多
关键词 Black phosphorus/MXene heterostructures Light-activated virtual sensor array Diagnosis of coronary heart disease Machine learning
下载PDF
An Examination of Computer Science and Internet Technologies in Addressing Educational Inequities and Societal Psychological Concerns:A Literature Review from the Perspectives of 5G,Artificial Intelligence,and Augmented/Virtual Reality
15
作者 Heying Liang Xueling Huang Peishi Wu 《Modern Electronic Technology》 2023年第2期13-19,共7页
This study comprehensively reviews the literature to deeply explore the role of computer science and internet technologies in addressing educational inequality and socio-psychological issues,with a particular focus on... This study comprehensively reviews the literature to deeply explore the role of computer science and internet technologies in addressing educational inequality and socio-psychological issues,with a particular focus on applications of 5G,artificial intelligence(AI),and augmented/virtual reality(AR/VR).By analyzing how these technologies are reshaping learning and their potential to ameliorate educational disparities,the study reveals challenges present in ensuring educational equity.The research methodology includes exhaustive reviews of applications of AI and machine learning,the Internet of Things and wearable technologies integration,big data analytics and data mining,and the effects of online platforms and social media on socio-psychological issues.Besides,the study discusses applications of these technologies in educational inequality and socio-psychological problem-solving through the lens of 5G,AI,and AR/VR,while also delineating challenges faced by these emerging technologies and future outlooks.The study finds that while computer science and internet technologies hold promise to bridge academic divides and address socio-psychological problems,the complexity of technology access and infrastructure,lack of digital literacy and skills,and critical ethical and privacy issues can impact widespread adoption and efficacy.Overall,the study provides a novel perspective to understand the potential of computer science and internet technologies in ameliorating educational inequality and socio-psychological issues,while pointing to new directions for future research.It also emphasizes the importance of cooperation among educational institutions,technology vendors,policymakers and researchers,and establishing comprehensive ethical guidelines and regulations to ensure the responsible use of these technologies. 展开更多
关键词 Educational inequality Societal psychological issues 5G Artificial intelligence Augmented/virtual reality Technological challenges
下载PDF
Towards engineering a portable platform for laparoscopic pre-training in virtual reality with haptic feedback
16
作者 Hans-Georg ENKLER Wolfgang KUNERT +4 位作者 Stefan PFEFFER Kai-Jonas BOCK Steffen AXT Jonas JOHANNINK Christoph REICH 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期83-99,共17页
Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training thro... Background Laparoscopic surgery is a surgical technique in which special instruments are inserted through small incision holes inside the body.For some time,efforts have been made to improve surgical pre training through practical exercises on abstracted and reduced models.Methods The authors strive for a portable,easy to use and cost-effective Virtual Reality-based(VR)laparoscopic pre-training platform and therefore address the question of how such a system has to be designed to achieve the quality of today's gold standard using real tissue specimens.Current VR controllers are limited regarding haptic feedback.Since haptic feedback is necessary or at least beneficial for laparoscopic surgery training,the platform to be developed consists of a newly designed prototype laparoscopic VR controller with haptic feedback,a commercially available head-mounted display,a VR environment for simulating a laparoscopic surgery,and a training concept.Results To take full advantage of benefits such as repeatability and cost-effectiveness of VR-based training,the system shall not require a tissue sample for haptic feedback.It is currently calculated and visually displayed to the user in the VR environment.On the prototype controller,a first axis was provided with perceptible feedback for test purposes.Two of the prototype VR controllers can be combined to simulate a typical both-handed use case,e.g.,laparoscopic suturing.A Unity based VR prototype allows the execution of simple standard pre-trainings.Conclusions The first prototype enables full operation of a virtual laparoscopic instrument in VR.In addition,the simulation can compute simple interaction forces.Major challenges lie in a realistic real-time tissue simulation and calculation of forces for the haptic feedback.Mechanical weaknesses were identified in the first hardware prototype,which will be improved in subsequent versions.All degrees of freedom of the controller are to be provided with haptic feedback.To make forces tangible in the simulation,characteristic values need to be determined using real tissue samples.The system has yet to be validated by cross-comparing real and VR haptics with surgeons. 展开更多
关键词 Laparoscopic surgery Training virtual reality CONTROLLER Haptic feedback Kinesthetic skills
下载PDF
Virtual reality for preoperative patient education: Impact on satisfaction, usability, and burnout from the perspective of new nurses
17
作者 Jiyoung Kim Donghyun Kim +1 位作者 Sang-Ha Oh Hyeokjae Kwon 《World Journal of Clinical Cases》 SCIE 2024年第28期6204-6216,共13页
BACKGROUND Traditional paper-based preoperative patient education is a struggle for new nurses and requires extensive training.In this situation,virtual reality technology can help the new nurses.Despite its potential... BACKGROUND Traditional paper-based preoperative patient education is a struggle for new nurses and requires extensive training.In this situation,virtual reality technology can help the new nurses.Despite its potential benefits,there are studies on patient satisfaction but there is limited information on the usability of virtual reality(VR)technology for new nurses in giving preoperative education to patients.AIM To investigate the impact on satisfaction,usability,and burnout of a system using VR technology in preoperative patient education.METHODS The study involved 20 nurses from the plastic surgery ward and 80 patients admitted between April and May 2019.Each nurse taught four patients:Two using traditional verbal education and two using virtual reality.The System Usability Scale,After-Scenario Questionnaire,and Maslach Burnout Inventory(MBI)were employed to evaluate the impact of these education methods.RESULTS The VR education groups showed a statistically higher satisfaction than the traditional verbal education groups.Among the three subscales of the MBI,emotional exhaustion and personal accomplishment improved statistically significantly.VR was also better in terms of usability.CONCLUSION This study suggests VR enhances usability and reduces burnout in nurses,but further research is needed to assess its impact on depersonalization and objective measures like stress and heart rate. 展开更多
关键词 virtual reality Preoperative care Patient education BURNOUT USABILITY SATISFACTION Prospective studies
下载PDF
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability during Voltage Dips
18
作者 Shitao Sun Yu Lei +4 位作者 Guowen Hao Yi Lu Jindong Liu Zhaoxin Song Jie Zhang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期143-151,共9页
Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua... Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method. 展开更多
关键词 virtual synchronous generator(VSG) Transient damping Synchronization stability Voltage dips
下载PDF
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
19
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
下载PDF
Chemical simulation teaching system based on virtual reality and gesture interaction
20
作者 Dengzhen LU Hengyi LI +2 位作者 Boyu QIU Siyuan LIU Shuhan QI 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期148-168,共21页
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ... Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education. 展开更多
关键词 Chemical experiment simulation Gesture interaction virtual reality Model establishment Process control Streaming media DATABASE
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部