Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In dat...Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.展开更多
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph...Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.展开更多
Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory...Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.展开更多
1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe...1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe internet era. Many companies started building large inter- net-connected facililies,展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physica...Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physical servers. The risks of software aging caused by aging-related bugs affect both VM and VMM. As a result, service reliability degrades may generate huge financial losses to companies. This paper presents an analytic model using stochastic reward nets for time-based rejuvenation techniques of VMM and VM. We propose to manipulate the VM behavior while the VMM rejuvenation is according to the load on the system. Using a previous Petri net model of virtualized server, we performed an algorithm in order to optimize rejuvenation technique and achieve high availability. So we perform Migrate-VM rejuvenation or Warm-VM rejuvenation while there are current jobs in the system. Although Migrate-VM rejuvenation is better than Warm-VM rejuvenation in steady state availability, it can’t be always performed as it depends on the capacity of the other host. When the queue is empty and the virtual machine has no current jobs to serve, we propose to combine both VMM rejuvenation and VM rejuvenation. We show that the proposed technique can enhance the availability of VMs.展开更多
文中以数据中心的网络虚拟化技术为研究对象,探讨了在现代数据中心环境下如何优化网络资源利用、提高网络性能和灵活性的问题。首先,引入了软件定义网络(Software Defined Networking,SDN)的基本概念与架构,分析了SDN与网络虚拟化的关...文中以数据中心的网络虚拟化技术为研究对象,探讨了在现代数据中心环境下如何优化网络资源利用、提高网络性能和灵活性的问题。首先,引入了软件定义网络(Software Defined Networking,SDN)的基本概念与架构,分析了SDN与网络虚拟化的关系。在此基础上,设计了一个综合性的网络虚拟化总体架构,以支持多租户的虚拟网络隔离和灵活配置。随后,详细介绍了虚拟局域网(Virtual Local Area Network,VLAN)技术在该总体架构中的实现方法。为验证VLAN技术在数据中心网络中的效果,文中设计了实验环境并进行了实验评估。结果表明,VLAN技术有效提高了数据中心网络的资源利用率,提升了网络的灵活性和性能,验证了其在数据中心网络中的实用性和优越性。展开更多
基金supported in part by the following funding agencies of China:National Natural Science Foundation under Grant 61602050 and U1534201National Key Research and Development Program of China under Grant 2016QY01W0200
文摘Virtual data center is a new form of cloud computing concept applied to data center. As one of the most important challenges, virtual data center embedding problem has attracted much attention from researchers. In data centers, energy issue is very important for the reality that data center energy consumption has increased by dozens of times in the last decade. In this paper, we are concerned about the cost-aware multi-domain virtual data center embedding problem. In order to solve this problem, this paper first addresses the energy consumption model. The model includes the energy consumption model of the virtual machine node and the virtual switch node, to quantify the energy consumption in the virtual data center embedding process. Based on the energy consumption model above, this paper presents a heuristic algorithm for cost-aware multi-domain virtual data center embedding. The algorithm consists of two steps: inter-domain embedding and intra-domain embedding. Inter-domain virtual data center embedding refers to dividing virtual data center requests into several slices to select the appropriate single data center. Intra-domain virtual data center refers to embedding virtual data center requests in each data center. We first propose an inter-domain virtual data center embedding algorithm based on label propagation to select the appropriate single data center. We then propose a cost-aware virtual data center embedding algorithm to perform the intra-domain data center embedding. Extensive simulation results show that our proposed algorithm in this paper can effectively reduce the energy consumption while ensuring the success ratio of embedding.
基金This research was partially supported by the National Grand Fundamental Research 973 Program of China under Grant (No. 2013CB329103), Natural Science Foundation of China grant (No. 61271171), the Fundamental Research Funds for the Central Universities (ZYGX2013J002, ZYGX2012J004, ZYGX2010J002, ZYGX2010J009), Guangdong Science and Technology Project (2012B090500003, 2012B091000163, 2012556031).
文摘Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2011CB302506Important National Science & Technology Specific Projects: Next-Generation Broadband Wireless Mobile Communications Network under Grant No.2011ZX03002-001-01Innovative Research Groups of the National Natural Science Foundation of China under Grant No.60821001
文摘Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods.
基金supported by the ZTE-BJTU Collaborative Research Program under Grant No. K11L00190the Fundamental Research Funds for the Central Universities under Grant No. K12JB00060
文摘1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe internet era. Many companies started building large inter- net-connected facililies,
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.
文摘Server virtualization is an essential component in virtualized software infrastructure such as cloud computing. Virtual machines are generated through a software called virtual machine monitor (VMM) running on physical servers. The risks of software aging caused by aging-related bugs affect both VM and VMM. As a result, service reliability degrades may generate huge financial losses to companies. This paper presents an analytic model using stochastic reward nets for time-based rejuvenation techniques of VMM and VM. We propose to manipulate the VM behavior while the VMM rejuvenation is according to the load on the system. Using a previous Petri net model of virtualized server, we performed an algorithm in order to optimize rejuvenation technique and achieve high availability. So we perform Migrate-VM rejuvenation or Warm-VM rejuvenation while there are current jobs in the system. Although Migrate-VM rejuvenation is better than Warm-VM rejuvenation in steady state availability, it can’t be always performed as it depends on the capacity of the other host. When the queue is empty and the virtual machine has no current jobs to serve, we propose to combine both VMM rejuvenation and VM rejuvenation. We show that the proposed technique can enhance the availability of VMs.
文摘文中以数据中心的网络虚拟化技术为研究对象,探讨了在现代数据中心环境下如何优化网络资源利用、提高网络性能和灵活性的问题。首先,引入了软件定义网络(Software Defined Networking,SDN)的基本概念与架构,分析了SDN与网络虚拟化的关系。在此基础上,设计了一个综合性的网络虚拟化总体架构,以支持多租户的虚拟网络隔离和灵活配置。随后,详细介绍了虚拟局域网(Virtual Local Area Network,VLAN)技术在该总体架构中的实现方法。为验证VLAN技术在数据中心网络中的效果,文中设计了实验环境并进行了实验评估。结果表明,VLAN技术有效提高了数据中心网络的资源利用率,提升了网络的灵活性和性能,验证了其在数据中心网络中的实用性和优越性。