期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel virtual material layer model for predicting natural frequencies of composite bolted joints 被引量:1
1
作者 Yu YANG Hui CHENG +3 位作者 Biao LIANG Di ZHAO Junshan HU Kaifu ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第8期101-111,共11页
A novel virtual material layer model based on the fractal theory was proposed to predict the natural frequencies of carbon fiber reinforced plastic composite bolted joints.Rough contact surfaces of composite bolted jo... A novel virtual material layer model based on the fractal theory was proposed to predict the natural frequencies of carbon fiber reinforced plastic composite bolted joints.Rough contact surfaces of composite bolted joints are modeled with this new proposed approach.Numerical and experimental modal analyses were conducted to validate the effectiveness of the proposed model.A good consistence is noted between the numerical and experimental results.To demonstrate the necessity of accurately modeling the rough contact surfaces in the prediction of natural frequencies,virtual material layer model was compared with the widely used traditional model based on the Master-Slave contact algorithm and experiments,respectively.Results show that the proposed model has a better agreement with experiments than the widely used traditional model(the prediction accuracy is raised by 8.77%when the pre-tightening torque is 0.5 N·m).Real contact area ratio A*of three different virtual material layers were calculated.Value of A*were discussed with dimensionless load P*,fractal dimension D and fractal roughness G.This work provides a new efficient way for accurately modeling the rough contact surfaces and predicting the natural frequencies of composite bolted joints,which can be used to help engineers in the dynamic design of composite materials. 展开更多
关键词 Composite joints Fractal theory Mechanical model Natural frequency virtual material layer
原文传递
Virtual special issue:Organic and polymer materials for electronics
2
作者 Pei Zhao Liangliang Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1706-1708,共3页
Welcome to this virtual special issue focusing on organic and polymer materials for electronics published in Chinese Chemical Letters since 2017. For more than a century, people have always believed that organic compo... Welcome to this virtual special issue focusing on organic and polymer materials for electronics published in Chinese Chemical Letters since 2017. For more than a century, people have always believed that organic compounds cannot be well employed for electronic conducting. Till 2000,Heeger,MacDiarmid and Shirakawa were acknowledged by the Nobel Prize of chemistry for 展开更多
关键词 virtual special issue:Organic and polymer materials for electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部