Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of vi...Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of virtual containers and improves the picking efficiency. However, the interval of consecutive goods caused by dispensers on conveyor can not be eliminated by DVWA, which limits a further improvement of picking efficiency. In order to solve this problem, a compressible virtual window algorithm (CVWA) is presented. It not only inherits the merit of DVWA but also compresses the length of virtual containers without congestion of order accumulation by advancing the beginning time of order picking and reasonably coordinating the pace of order accumulation. The simulation result proves that the picking efficiency of automated sorting system is greatly improved by CVWA.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Intern...Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.展开更多
Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in net...Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.展开更多
In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is disc...In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is discussed with corresponding formula deduction, and detailed descriptions and applications of VRS corrections and virtual observations generation algorithm are given.展开更多
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m...Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.展开更多
The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to cont...The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to control coding, we have got a self-adaptive coding model, and propose an algorithm of muhiplexing multiple elementary streams to a transport stream based on the principle of virtual buffer controlling strategy. The transport stream (TS) which uses this method passes the test of software unzipping and set top-box (STB) playing, and all of the analyzing parameters which are detected by code analyzer accord with the standard of MPEG-2. Some problems that playing time becomes longer and mul tiple TS streaming can not be fit for all the players are also analyzed.展开更多
This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously ...This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.展开更多
A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the ex...A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the existing algorithms are almost concentrated on the randomly small-scale network topology, which is not suitable for practical large-scale network environments, because more time is spent on traversing SN and VN, resulting in VN requests congestion. To address this problem, virtual network mapping algorithm is proposed for large-scale network based on small-world characteristic of complex network and network coordinate system. Compared our algorithm with algorithm D-ViNE, experimental results show that our algorithm improves the overall performance.展开更多
The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computi...The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.展开更多
The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compound...The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein.The use of virtual screening in pharmaceutical research is growing in popularity.During the early phases of medication research and development,it is crucial.Chemical compound searches are nowmore narrowly targeted.Because the databases containmore andmore ligands,thismethod needs to be quick and exact.Neural network fingerprints were created more effectively than the well-known Extended Connectivity Fingerprint(ECFP).Only the largest sub-graph is taken into consideration to learn the representation,despite the fact that the conventional graph network generates a better-encoded fingerprint.When using the average or maximum pooling layer,it also contains unrelated data.This article suggested the Graph Convolutional Attention Network(GCAN),a graph neural network with an attention mechanism,to address these problems.Additionally,it makes the nodes or sub-graphs that are used to create the molecular fingerprint more significant.The generated fingerprint is used to classify drugs using ensemble learning.As base classifiers,ensemble stacking is applied to Support Vector Machines(SVM),Random Forest,Nave Bayes,Decision Trees,AdaBoost,and Gradient Boosting.When compared to existing models,the proposed GCAN fingerprint with an ensemble model achieves relatively high accuracy,sensitivity,specificity,and area under the curve.Additionally,it is revealed that our ensemble learning with generated molecular fingerprint yields 91%accuracy,outperforming earlier approaches.展开更多
Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications...Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications’ computation ability needs. These applications can be presented as meta-job of user’s demand. The total processing time of these jobs may need data transmission time over the Internet as well as the completed time of jobs to execute on the virtual machine must be taken into account. In this paper, we presented V-heuristics scheduling algorithm for allocation of virtualized network and computing resources under user’s constraint which applied into a service-oriented resource broker for jobs scheduling. This scheduling algorithm takes into account both data transmission time and computation time that related to virtualized network and virtual machine. The simulation results are compared with three different types of heuristic algorithms under conventional network or virtual network conditions such as MCT, Min-Min and Max-Min. e evaluate these algorithms within a simulated cloud environment via an abilenenetwork topology which is real physical core network topology. These experimental results show that V-heuristic scheduling algorithm achieved significant performance gain for a variety of applications in terms of load balance, Makespan, average resource utilization and total processing time.展开更多
In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communi...In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications...In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate des...Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.展开更多
This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then...This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then the global controller abstracts substrate network topology based on the candidate nodes and boundary nodes of each domain, and applies Particle Swarm Optimization Algorithm on it to divide virtual network requests. Each local controller then embeds the virtual nodes of the divided single-domain virtual network requests in the domain, and cooperates with other local controllers to embed the inter-domain virtual links. Simulation experimental results show that the proposed algorithm has good performance in reducing embedding cost with good stability and scalability.展开更多
Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
基金National Natural Science Foundation of China(No.50175064)
文摘Compared to fixed virtual window algorithm (FVWA), the dynamic virtual window algorithm (DVWA) determines the length of each virtual container according to the sizes of goods of each order, which saves space of virtual containers and improves the picking efficiency. However, the interval of consecutive goods caused by dispensers on conveyor can not be eliminated by DVWA, which limits a further improvement of picking efficiency. In order to solve this problem, a compressible virtual window algorithm (CVWA) is presented. It not only inherits the merit of DVWA but also compresses the length of virtual containers without congestion of order accumulation by advancing the beginning time of order picking and reasonably coordinating the pace of order accumulation. The simulation result proves that the picking efficiency of automated sorting system is greatly improved by CVWA.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金supported by the National Key Research and Development of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grant 61372124 and Grant 61427801
文摘Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329005
文摘Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.
基金Funded by the National 973 Program of China (No. 2006CB701301)the Basic Research of Geomatics and Geodesy of the Key Laboratory of Geo-space Environment and Geodesy, Ministry of Education, China (No. 03-04-10)the Project of University Education and Research of Hubei Province(No.20053039).
文摘In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is discussed with corresponding formula deduction, and detailed descriptions and applications of VRS corrections and virtual observations generation algorithm are given.
基金supported by the National Research Foundation (NRF) of Korea through contract N-14-NMIR06
文摘Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors.
基金Supported by the Electronics Developing FundProject ( MII[2002]13)
文摘The paper presents a prototype of virtual decoder of the transport stream's system target decoder (T-STD). By connecting the coding model and decoding model, and feeding the overflow of decoding buffer back to control coding, we have got a self-adaptive coding model, and propose an algorithm of muhiplexing multiple elementary streams to a transport stream based on the principle of virtual buffer controlling strategy. The transport stream (TS) which uses this method passes the test of software unzipping and set top-box (STB) playing, and all of the analyzing parameters which are detected by code analyzer accord with the standard of MPEG-2. Some problems that playing time becomes longer and mul tiple TS streaming can not be fit for all the players are also analyzed.
文摘This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.
基金Sponsored by the Funds for Creative Research Groups of China(Grant No. 60821001)National Natural Science Foundation of China(Grant No.60973108 and 60902050)973 Project of China (Grant No.2007CB310703)
文摘A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the existing algorithms are almost concentrated on the randomly small-scale network topology, which is not suitable for practical large-scale network environments, because more time is spent on traversing SN and VN, resulting in VN requests congestion. To address this problem, virtual network mapping algorithm is proposed for large-scale network based on small-world characteristic of complex network and network coordinate system. Compared our algorithm with algorithm D-ViNE, experimental results show that our algorithm improves the overall performance.
文摘The demand for cloud computing has increased manifold in the recent past.More specifically,on-demand computing has seen a rapid rise as organizations rely mostly on cloud service providers for their day-to-day computing needs.The cloud service provider fulfills different user requirements using virtualization-where a single physical machine can host multiple VirtualMachines.Each virtualmachine potentially represents a different user environment such as operating system,programming environment,and applications.However,these cloud services use a large amount of electrical energy and produce greenhouse gases.To reduce the electricity cost and greenhouse gases,energy efficient algorithms must be designed.One specific area where energy efficient algorithms are required is virtual machine consolidation.With virtualmachine consolidation,the objective is to utilize the minimumpossible number of hosts to accommodate the required virtual machines,keeping in mind the service level agreement requirements.This research work formulates the virtual machine migration as an online problem and develops optimal offline and online algorithms for the single host virtual machine migration problem under a service level agreement constraint for an over-utilized host.The online algorithm is analyzed using a competitive analysis approach.In addition,an experimental analysis of the proposed algorithm on real-world data is conducted to showcase the improved performance of the proposed algorithm against the benchmark algorithms.Our proposed online algorithm consumed 25%less energy and performed 43%fewer migrations than the benchmark algorithms.
文摘The drug development process takes a long time since it requires sorting through a large number of inactive compounds from a large collection of compounds chosen for study and choosing just the most pertinent compounds that can bind to a disease protein.The use of virtual screening in pharmaceutical research is growing in popularity.During the early phases of medication research and development,it is crucial.Chemical compound searches are nowmore narrowly targeted.Because the databases containmore andmore ligands,thismethod needs to be quick and exact.Neural network fingerprints were created more effectively than the well-known Extended Connectivity Fingerprint(ECFP).Only the largest sub-graph is taken into consideration to learn the representation,despite the fact that the conventional graph network generates a better-encoded fingerprint.When using the average or maximum pooling layer,it also contains unrelated data.This article suggested the Graph Convolutional Attention Network(GCAN),a graph neural network with an attention mechanism,to address these problems.Additionally,it makes the nodes or sub-graphs that are used to create the molecular fingerprint more significant.The generated fingerprint is used to classify drugs using ensemble learning.As base classifiers,ensemble stacking is applied to Support Vector Machines(SVM),Random Forest,Nave Bayes,Decision Trees,AdaBoost,and Gradient Boosting.When compared to existing models,the proposed GCAN fingerprint with an ensemble model achieves relatively high accuracy,sensitivity,specificity,and area under the curve.Additionally,it is revealed that our ensemble learning with generated molecular fingerprint yields 91%accuracy,outperforming earlier approaches.
文摘Cloud computing technology facilitates computing-intensive applications by providing virtualized resources which can be dynamically provisioned. However, user’s requests are varied according to different applications’ computation ability needs. These applications can be presented as meta-job of user’s demand. The total processing time of these jobs may need data transmission time over the Internet as well as the completed time of jobs to execute on the virtual machine must be taken into account. In this paper, we presented V-heuristics scheduling algorithm for allocation of virtualized network and computing resources under user’s constraint which applied into a service-oriented resource broker for jobs scheduling. This scheduling algorithm takes into account both data transmission time and computation time that related to virtualized network and virtual machine. The simulation results are compared with three different types of heuristic algorithms under conventional network or virtual network conditions such as MCT, Min-Min and Max-Min. e evaluate these algorithms within a simulated cloud environment via an abilenenetwork topology which is real physical core network topology. These experimental results show that V-heuristic scheduling algorithm achieved significant performance gain for a variety of applications in terms of load balance, Makespan, average resource utilization and total processing time.
文摘In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
基金This work was supported in part by the National Science and Technology Council of Taiwan,under Contract NSTC 112-2410-H-324-001-MY2.
文摘In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
基金This work was supported in part by the Natural Science Foundation of the Education Department of Henan Province(Grant 22A520025)the National Natural Science Foundation of China(Grant 61975053)the National Key Research and Development of Quality Information Control Technology for Multi-Modal Grain Transportation Efficient Connection(2022YFD2100202).
文摘Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications.Nevertheless,existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets,such as preservation and server infrastructure,in a limited number of large-scale worldwide data facilities.Optimizing the deployment of virtual machines(VMs)is crucial in this scenario to ensure system dependability,performance,and minimal latency.A significant barrier in the present scenario is the load distribution,particularly when striving for improved energy consumption in a hypothetical grid computing framework.This design employs load-balancing techniques to allocate different user workloads across several virtual machines.To address this challenge,we propose using the twin-fold moth flame technique,which serves as a very effective optimization technique.Developers intentionally designed the twin-fold moth flame method to consider various restrictions,including energy efficiency,lifespan analysis,and resource expenditures.It provides a thorough approach to evaluating total costs in the cloud computing environment.When assessing the efficacy of our suggested strategy,the study will analyze significant metrics such as energy efficiency,lifespan analysis,and resource expenditures.This investigation aims to enhance cloud computing techniques by developing a new optimization algorithm that considers multiple factors for effective virtual machine placement and load balancing.The proposed work demonstrates notable improvements of 12.15%,10.68%,8.70%,13.29%,18.46%,and 33.39%for 40 count data of nodes using the artificial bee colony-bat algorithm,ant colony optimization,crow search algorithm,krill herd,whale optimization genetic algorithm,and improved Lévy-based whale optimization algorithm,respectively.
基金supported by "the Fundamental Research Funds for the Central Universities" of China University of Petroleum (East China) (Grant No. 18CX02139A)the National Natural Science Foundation of China (Grant No. 61471056)
文摘This paper proposed a multi-domain virtual network embedding algorithm based on multi-controller SDN architecture. The local controller first selects candidate substrate nodes for each virtual node in the domain. Then the global controller abstracts substrate network topology based on the candidate nodes and boundary nodes of each domain, and applies Particle Swarm Optimization Algorithm on it to divide virtual network requests. Each local controller then embeds the virtual nodes of the divided single-domain virtual network requests in the domain, and cooperates with other local controllers to embed the inter-domain virtual links. Simulation experimental results show that the proposed algorithm has good performance in reducing embedding cost with good stability and scalability.
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.