The network services today require extremely agile and mobile, however, the traditional IP infrastructures are so rigid that cannot fit services well. A way should be put forward to automate the network to improve res...The network services today require extremely agile and mobile, however, the traditional IP infrastructures are so rigid that cannot fit services well. A way should be put forward to automate the network to improve responsiveness to change. SDN and network virtualization(NV) are two hottest approaches to make networking more automated and scalable to support virtualized and cloud environments. Network virtualization combines hardware and software network resources and network functionality into a single virtual network. SDN is created to simplify traffic management and achieve operational efficiencies by establish and exercising central control over packet forwarding. In this paper, we focus on the situation where SDN controller needs to connect two virtual networks temporarily. We put forward three algorithms to try to make this connection more effective and evaluate these three algorithms.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertain...Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertainty causing issues to licensed users,business models for licensed service providers.Wireless virtualization is regarded as a technology that leverages service level agreements to sublease unused or underutilized RF spectrum that addresses aforementioned issues and helps to significantly enhance the utilization of the RF spectrum,offer improved coverage and capacity of networks,enhance network security and reduce energy consumption.With wireless virtualization,wireless networks'physical substrate is shared and reconfigured dynamically between virtual wireless networks through Mobile Virtual Network Operations(MVNOs).Wireless virtualization with dynamic configurable features of Wireless Infrastructure Providers(WIPs),virtualized wireless networks are vulnerable to a multitude of attacks,including jamming attacks and eavesdropping attacks.This paper investigates a means of defense through the employment of coalition game theory when jammers try to degrade the signal quality of legitimate users,and eavesdroppers aim to reduce secrecy rates.Specifically,we consider a virtual wireless network where MVNO users'job is to improve their Signal to Interference plus Noise Ratio(SINR)while the jammers target to collectively enhance their Jammer Received Signal Strength(JRSS),and an eavesdropper's goal is to reduce the overall secrecy rate.Numerical results have demonstrated that the proposed game strategies are effective(in terms of data rate,secrecy rate and latency)against such attackers compared to the traditional approaches.展开更多
The virtual network embedding/mapping problem is a core issue of the network virtualization. It's mainly concerned with how to map virtual network requests to the substrate network efficiently. Previous researches ma...The virtual network embedding/mapping problem is a core issue of the network virtualization. It's mainly concerned with how to map virtual network requests to the substrate network efficiently. Previous researches mainly focus on developing heuristic algorithms for general topology virtual network request. In this paper, we propose a new algorithm for the hub-and-spoke (HAS) topology virtual request. The characters of the HAS topology are exploited to develop the new algorithm. The simulation results show that the new algorithm greatly enhances the performance of revenue/cost (R/C) ratio while the HAS topology request arrives.展开更多
In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a...In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.展开更多
In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the grow...In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amoun...The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amount of data generated by mobile intelligent devices in less time response.Network Function Virtualization(NFV)that decouples network functions from dedicated hardware is an important architecture to implement edge computing,deploying heterogeneous Virtual Network Functions(VNF)(such as computer vision,natural language processing,intelligent control,etc.)on the edge service nodes.With the NFV MANO(Management and Orchestration)framework,a Service Function Chain(SFC)that contains a set of ordered VNFs can be constructed and placed in the network to offer a customized network service.However,the procedure of NFV orchestration faces a technical challenge in minimizing the network cost of VNF placement due to the complexity of the changing effect of traffic volume and the dependency on theVNFrelationship.To this end,we jointly optimize SFC design and VNF placement to minimize resource cost while taking account of VNF dependency and traffic volume scaling.First,the problem is formulated as an Integer Linear Programming(ILP)model and proved NPhard by reduction from Hamiltonian Cycle problem.Then we proposed an efficient heuristic algorithm called Traffic Aware and Interdependent VNF Placement(TAIVP)to solve the problem.Compared with the benchmark algorithms,emulation results show that our algorithm can reduce network cost by 10.2%and increase service request acceptance rate by 7.6%on average.展开更多
Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control...Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.展开更多
Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource pro...Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource properties of individual nodes are considered,node storage properties and the network topology properties are usually ignored in Virtual Network(VN)modelling,which leads to the inaccurate measurement of node availability and priority.In addition,most static virtual network mapping methods allocate fixed resources to users during the entire life cycle,and the users’actual resource requirements vary with the workload,which results in resource allocation redundancy.Based on the above analysis,in this paper,we propose a dynamic resource sharing virtual network mapping algorithm named NMA-PRS-VNE,first,we construct a new,more realistic network framework in which the properties of nodes include computing resources,storage resources and topology properties.In the node mapping process,three properties of the node are used to measure its mapping ability.Second,we consider the resources of adjacent nodes and links instead of the traditional method of measuring the availability and priority of nodes by considering only the resource properties,so as to more accurately select the physical mapping nodes that meet the constraints and conditions and improve the success rate of subsequent link mapping.Finally,we divide the resource requirements of Virtual Network Requests(VNRs)into basic subrequirements and variable sub-variable requirements to complete dynamic resource allocation.The former represents monopolizing resource requirements by the VNRs,while the latter represents shared resources by many VNRs with the probability of occupying resources,where we keep a balance between resource sharing and collision among users by calculating the collision probability.Simulation results show that the proposed NMAPRS-VNE can increase the average acceptance rate and network revenue by 15%and 38%,and reduce the network cost and link pressure by 25%and 17%.展开更多
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne...Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(S...Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.展开更多
The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SD...The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.展开更多
The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex vi...The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.展开更多
As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources...As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.展开更多
Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated fr...Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated from each other, share the underlying resources of one or multiple substrate networks(SNs) according to the resource allocation strategy. This kind of resource allocation strategy is commonly known as so called Virtual Network Embedding(VNE) algorithm in network virtualization. Owing to the common sense that VNE problem is NP-hard in nature, most of VNE algorithms proposed in the literature are heuristic. This paper surveys and analyzes a number of representative heuristic solutions in the literature. Apart from the analysis of representative heuristic solutions, a taxonomy of the heuristic solutions is also presented in the form of table. Future research directions of VNE, especially for the heuristics, are emphasized and highlighted at the end of this survey.展开更多
Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Intern...Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.展开更多
基金supported under the National High Technology Research and Development Program(863)of China(No.2015AA016101)the National Natural Science Funds(No.61300184+1 种基金61302089)Beijing Nova Program(No.Z151100000315078)
文摘The network services today require extremely agile and mobile, however, the traditional IP infrastructures are so rigid that cannot fit services well. A way should be put forward to automate the network to improve responsiveness to change. SDN and network virtualization(NV) are two hottest approaches to make networking more automated and scalable to support virtualized and cloud environments. Network virtualization combines hardware and software network resources and network functionality into a single virtual network. SDN is created to simplify traffic management and achieve operational efficiencies by establish and exercising central control over packet forwarding. In this paper, we focus on the situation where SDN controller needs to connect two virtual networks temporarily. We put forward three algorithms to try to make this connection more effective and evaluate these three algorithms.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
基金This work was supported in part by the US NSF under grants CNS 1650831 and HRD 1828811by the U.S.Department of Homeland Security under grant DHS 2017-ST-062-000003by the DoE's National Nuclear Security Administration(NNSA)Award#DE-NA0003946.
文摘Dynamic spectrum sharing and cognitive radio networks were proposed to enhance the Radio Frequency(RF)spectrum utilization.However,there are several challenges to realize them in real systems,such as sensing uncertainty causing issues to licensed users,business models for licensed service providers.Wireless virtualization is regarded as a technology that leverages service level agreements to sublease unused or underutilized RF spectrum that addresses aforementioned issues and helps to significantly enhance the utilization of the RF spectrum,offer improved coverage and capacity of networks,enhance network security and reduce energy consumption.With wireless virtualization,wireless networks'physical substrate is shared and reconfigured dynamically between virtual wireless networks through Mobile Virtual Network Operations(MVNOs).Wireless virtualization with dynamic configurable features of Wireless Infrastructure Providers(WIPs),virtualized wireless networks are vulnerable to a multitude of attacks,including jamming attacks and eavesdropping attacks.This paper investigates a means of defense through the employment of coalition game theory when jammers try to degrade the signal quality of legitimate users,and eavesdroppers aim to reduce secrecy rates.Specifically,we consider a virtual wireless network where MVNO users'job is to improve their Signal to Interference plus Noise Ratio(SINR)while the jammers target to collectively enhance their Jammer Received Signal Strength(JRSS),and an eavesdropper's goal is to reduce the overall secrecy rate.Numerical results have demonstrated that the proposed game strategies are effective(in terms of data rate,secrecy rate and latency)against such attackers compared to the traditional approaches.
基金supported by the National Basic Research Program of China (2011CB302901,2012CB315801)the Fundamental Research Funds for the Central Universities (2011RC0118)
文摘The virtual network embedding/mapping problem is a core issue of the network virtualization. It's mainly concerned with how to map virtual network requests to the substrate network efficiently. Previous researches mainly focus on developing heuristic algorithms for general topology virtual network request. In this paper, we propose a new algorithm for the hub-and-spoke (HAS) topology virtual request. The characters of the HAS topology are exploited to develop the new algorithm. The simulation results show that the new algorithm greatly enhances the performance of revenue/cost (R/C) ratio while the HAS topology request arrives.
基金supported by National Natural Science Foundation of China under Grant No.61240040
文摘In order to reduce cost and complexity,fiber-wireless(FiWi) networks emerge,combining the huge amount of available bandwidth of fiber networks and the flexibility,mobility of wireless networks.However,there is still a long way to go before taking fiber and wireless systems as fully integrated networks.In this paper,we propose a network visualization based seamless networking scheme for FiWi networks,including hierarchical model,service model,service implementation and dynamic bandwidth assignment(DBA).Then,we evaluate the performance changes after network virtualization is introduced.Throughput for nodes,bandwidth for links and overheads leaded by network virtualization are analyzed.The performance of our proposed networking scheme is evaluated by simulation and real implementations,respectively.The results show that,compared to traditional networking scheme,our scheme has a better performance.
基金This work is supported by the Fundamental Research Funds for the Central Universities.
文摘In recent years,satellite networks have been proposed as an essential part of next-generation mobile communication systems.Software defined networking techniques are introduced in satellite networks to handle the growing challenges induced by time-varying topology,intermittent inter-satellite link and dramatically increased satellite constellation size.This survey covers the latest progress of software defined satellite networks,including key techniques,existing solutions,challenges,opportunities,and simulation tools.To the best of our knowledge,this paper is the most comprehensive survey that covers the latest progress of software defined satellite networks.An open GitHub repository is further created where the latest papers on this topic will be tracked and updated periodically.Compared with these existing surveys,this survey contributes from three aspects:(1)an up-to-date SDN-oriented review for the latest progress of key techniques and solutions in software defined satellite networks;(2)an inspiring summary of existing challenges,new research opportunities and publicly available simulation tools for follow-up studies;(3)an effort of building a public repository to track new results.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
基金supported in part by the Open Research Projects of Zhejiang Lab(No.2021LC0AB04)in part by the National Natural Science Foundation of China(NSFC)(Nos.62171085,62001087,U20A20156,and 61871097).
文摘The development of Fifth-Generation(5G)mobile communication technology has remarkably promoted the spread of the Internet of Things(IoT)applications.As a promising paradigm for IoT,edge computing can process the amount of data generated by mobile intelligent devices in less time response.Network Function Virtualization(NFV)that decouples network functions from dedicated hardware is an important architecture to implement edge computing,deploying heterogeneous Virtual Network Functions(VNF)(such as computer vision,natural language processing,intelligent control,etc.)on the edge service nodes.With the NFV MANO(Management and Orchestration)framework,a Service Function Chain(SFC)that contains a set of ordered VNFs can be constructed and placed in the network to offer a customized network service.However,the procedure of NFV orchestration faces a technical challenge in minimizing the network cost of VNF placement due to the complexity of the changing effect of traffic volume and the dependency on theVNFrelationship.To this end,we jointly optimize SFC design and VNF placement to minimize resource cost while taking account of VNF dependency and traffic volume scaling.First,the problem is formulated as an Integer Linear Programming(ILP)model and proved NPhard by reduction from Hamiltonian Cycle problem.Then we proposed an efficient heuristic algorithm called Traffic Aware and Interdependent VNF Placement(TAIVP)to solve the problem.Compared with the benchmark algorithms,emulation results show that our algorithm can reduce network cost by 10.2%and increase service request acceptance rate by 7.6%on average.
基金This work was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.5199990914048)this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543).In addition,this work was supported by the Soonchunhyang University Research Fund.
文摘Edge intelligence brings the deployment of applied deep learning(DL)models in edge computing systems to alleviate the core backbone network congestions.The setup of programmable software-defined networking(SDN)control and elastic virtual computing resources within network functions virtualization(NFV)are cooperative for enhancing the applicability of intelligent edge softwarization.To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization,this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows,link delays,and allocatable bandwidth capacities.Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio.The optimization problem of resource placement is tackled by a deep reinforcement learning(DRL)-based policy following the Markov decision process(MDP).The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps.The reward formulation primarily considers taskrequired computing resources and action-applied allocation properties.With defined policies of resource determination,the orchestration procedure is configured within each virtual network function(VNF)descriptor using topology and orchestration specification for cloud applications(TOSCA)by specifying the allocated properties.The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller.Average delay and task delivery/drop ratios are used as the key performance metrics.
基金We are grateful for the support of the Natural Science Foundation of Shandong Province(No.ZR2020LZH008,ZR2020QF112,ZR2019MF071)the National Natural Science Foundation of China(61373149).
文摘Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource properties of individual nodes are considered,node storage properties and the network topology properties are usually ignored in Virtual Network(VN)modelling,which leads to the inaccurate measurement of node availability and priority.In addition,most static virtual network mapping methods allocate fixed resources to users during the entire life cycle,and the users’actual resource requirements vary with the workload,which results in resource allocation redundancy.Based on the above analysis,in this paper,we propose a dynamic resource sharing virtual network mapping algorithm named NMA-PRS-VNE,first,we construct a new,more realistic network framework in which the properties of nodes include computing resources,storage resources and topology properties.In the node mapping process,three properties of the node are used to measure its mapping ability.Second,we consider the resources of adjacent nodes and links instead of the traditional method of measuring the availability and priority of nodes by considering only the resource properties,so as to more accurately select the physical mapping nodes that meet the constraints and conditions and improve the success rate of subsequent link mapping.Finally,we divide the resource requirements of Virtual Network Requests(VNRs)into basic subrequirements and variable sub-variable requirements to complete dynamic resource allocation.The former represents monopolizing resource requirements by the VNRs,while the latter represents shared resources by many VNRs with the probability of occupying resources,where we keep a balance between resource sharing and collision among users by calculating the collision probability.Simulation results show that the proposed NMAPRS-VNE can increase the average acceptance rate and network revenue by 15%and 38%,and reduce the network cost and link pressure by 25%and 17%.
基金This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number(DSR2022-RG-0102).
文摘Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金The financial support fromthe Major Science and Technology Programs inHenan Province(Grant No.241100210100)National Natural Science Foundation of China(Grant No.62102372)+3 种基金Henan Provincial Department of Science and Technology Research Project(Grant No.242102211068)Henan Provincial Department of Science and Technology Research Project(Grant No.232102210078)the Stabilization Support Program of The Shenzhen Science and Technology Innovation Commission(Grant No.20231130110921001)the Key Scientific Research Project of Higher Education Institutions of Henan Province(Grant No.24A520042)is acknowledged.
文摘Aiming at the rapid growth of network services,which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain(SFC)under 5G networks,this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment(MADDPG-SD).Initially,an optimization model is devised to enhance the request acceptance rate,minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case.Subsequently,we model the dynamic problem as a Markov decision process(MDP),facilitating adaptation to the evolving states of network resources.Finally,by allocating SFCs to different agents and adopting a collaborative deployment strategy,each agent aims to maximize the request acceptance rate or minimize latency and costs.These agents learn strategies from historical data of virtual network functions in SFCs to guide server node selection,and achieve approximately optimal SFC deployment strategies through a cooperative framework of centralized training and distributed execution.Experimental simulation results indicate that the proposed method,while simultaneously meeting performance requirements and resource capacity constraints,has effectively increased the acceptance rate of requests compared to the comparative algorithms,reducing the end-to-end latency by 4.942%and the deployment cost by 8.045%.
文摘The virtual network embedding/mapping problem is an important issue in network virtualization in Software-Defined Networking(SDN).It is mainly concerned with mapping virtual network requests,which could be a set of SDN flows,onto a shared substrate network automatically and efficiently.Previous researches mainly focus on developing heuristic algorithms for general topology virtual network.In practice however,the virtual network is usually generated with specific topology for specific purpose.Thus,it is a challenge to optimize the heuristic algorithms with these topology information.In order to deal with this problem,we propose a topology-cognitive algorithm framework,which is composed of a guiding principle for topology algorithm developing and a compound algorithm.The compound algorithm is composed of several subalgorithms,which are optimized for specific topologies.We develop star,tree,and ring topology algorithms as examples,other subalgorithms can be easily achieved following the same framework.The simulation results show that the topology-cognitive algorithm framework is effective in developing new topology algorithms,and the developed compound algorithm greatly enhances the performance of the Revenue/Cost(R/C) ratio and the Runtime than traditional heuristic algorithms for multi-topology virtual network embedding problem.
基金supported in part by Open Foundation of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2014B009)Fundamental Research Funds for the Central Universities (Grant Nos. N130817002, N150401002)+1 种基金Foundation of the Education Department of Liaoning Province (Grant No. L2014089)National Natural Science Foundation of China (Grant Nos. 61302070, 61401082, 61471109, 61502075, 91438110)
文摘The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.
基金supported by the national 973 project of China under Grants 2013CB329104the Natural Science Foundation of China under Grants 61372124,61427801,61271237,61271236Jiangsu Collaborative Innovation Center for Technology and Application of Internet of Things under Grants SJ213003
文摘As a key technology to realize smart services of Internet of Things(IoT), network virtualization technology can support the network diversification and ubiquity, and improve the utilization rate of network resources. This paper studies the service-ori- ented network virtualization architecture for loT services. Firstly the semantic description method for loT services is proposed, then the resource representation model and resource management model in the environment of network virtualization are presented. Based on the above models, the service-oriented virtual network architecture for loT is established. Finally, a smart campus system is designed and deployed based on the service-oriented virtual network architecture. Moreover, the proposed architecture and models are verified in experiments.
基金supported by the National Natural Science Foundation of China under Grants 61372124 and 61401225the National Science Foundation of Jiangsu Province under Grant BK20140894the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX17_0784
文摘Network virtualization(NV) is considered as an enabling tool to remove the gradual ossification of current Internet. In the network virtualization environment, a set of heterogeneous virtual networks(VNs), isolated from each other, share the underlying resources of one or multiple substrate networks(SNs) according to the resource allocation strategy. This kind of resource allocation strategy is commonly known as so called Virtual Network Embedding(VNE) algorithm in network virtualization. Owing to the common sense that VNE problem is NP-hard in nature, most of VNE algorithms proposed in the literature are heuristic. This paper surveys and analyzes a number of representative heuristic solutions in the literature. Apart from the analysis of representative heuristic solutions, a taxonomy of the heuristic solutions is also presented in the form of table. Future research directions of VNE, especially for the heuristics, are emphasized and highlighted at the end of this survey.
基金supported by the National Key Research and Development of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grant 61372124 and Grant 61427801
文摘Network virtualization(NV) is pushed forward by its proponents as a crucial attribute of next generation network, aiming at overcoming the gradual ossification of current networks, particularly to the worldwide Internet. Through virtualization, multiple customized virtual networks(VNs), requested by users, are allowed to coexist on the underlying substrate networks(SNs). In addition, the virtualization scheme contributes to sharing underlying physical resources simultaneously and seamlessly. However, multiple technical issues still stand in the way of NV successful implementation. One key technical issue is virtual network embedding(VNE), known as the resource allocation problem for NV. This paper conducts a survey of embedding algorithms for VNE problem. At first, the NV business model for VNE problem is presented. Then, the latest VNE problem description is presented. Main performance metrics for evaluating embedding algorithms are also involved. Afterwards, existing VNE algorithms are detailed, according to the novel proposed category approach. Next, key future research aspects of embedding algorithms are listed out. Finally, the paper is briefly concluded.