A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational fi...A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational field of ordinary matter, which contains virtual photons, virtual positive and negative electron pairs, virtual gluons, virtual positive and negative quark pairs, virtual neutrinos etc. In this mechanism, there are two basic assumptions: 1) the stronger the gravitational field of ordinary matter, the greater the excited energy (mass) density of virtual particle field;2) The excited virtual particle field is generally very weak in self-interaction. The virtual particle field excited by gravity can exhibit the properties of dark matter and may become a dark matter candidate. Based on this new dark matter mechanism, the hydrodynamic equations and cosmic perturbation equations describing cosmic matter are improved, and this may be meaningful for solving the challenges faced by the standard cosmological model (Lambda-CDM or LCDM) and developing and perfecting LCDM model.展开更多
Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5...Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.展开更多
An equation is given for analytically defining the value of the fine structure constant, whose derivation follows two main steps, relative to the generation of electric charges and to the polarizability of vacuum due ...An equation is given for analytically defining the value of the fine structure constant, whose derivation follows two main steps, relative to the generation of electric charges and to the polarizability of vacuum due to virtual dipoles. The obtained value matches the experimental one by a factor lower than the relative standard uncertainty produced by the National Institute of Standards and Technology (NIST).展开更多
The paper presents the basic principles of the information image theory and a mathematical model developed using it. The hierarchy of information images in an individual mind, which determines his/her real and virtua...The paper presents the basic principles of the information image theory and a mathematical model developed using it. The hierarchy of information images in an individual mind, which determines his/her real and virtual activity, is considered. Algo- rithms for describing transfer and distortion of information images by individuals in the communication process are constructed. To corroborate the theory experimentally, the bilingual Stroop test is used. The results of the test are interpreted using the introduced theory, and are then compared with the results of computer modeling based on the theory. It is shown that information images can be used not only to explain a number of cognitive processes of the human mind, but also to predict their dynamics in a number of particular cases.展开更多
文摘A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational field of ordinary matter, which contains virtual photons, virtual positive and negative electron pairs, virtual gluons, virtual positive and negative quark pairs, virtual neutrinos etc. In this mechanism, there are two basic assumptions: 1) the stronger the gravitational field of ordinary matter, the greater the excited energy (mass) density of virtual particle field;2) The excited virtual particle field is generally very weak in self-interaction. The virtual particle field excited by gravity can exhibit the properties of dark matter and may become a dark matter candidate. Based on this new dark matter mechanism, the hydrodynamic equations and cosmic perturbation equations describing cosmic matter are improved, and this may be meaningful for solving the challenges faced by the standard cosmological model (Lambda-CDM or LCDM) and developing and perfecting LCDM model.
文摘Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.
文摘An equation is given for analytically defining the value of the fine structure constant, whose derivation follows two main steps, relative to the generation of electric charges and to the polarizability of vacuum due to virtual dipoles. The obtained value matches the experimental one by a factor lower than the relative standard uncertainty produced by the National Institute of Standards and Technology (NIST).
文摘The paper presents the basic principles of the information image theory and a mathematical model developed using it. The hierarchy of information images in an individual mind, which determines his/her real and virtual activity, is considered. Algo- rithms for describing transfer and distortion of information images by individuals in the communication process are constructed. To corroborate the theory experimentally, the bilingual Stroop test is used. The results of the test are interpreted using the introduced theory, and are then compared with the results of computer modeling based on the theory. It is shown that information images can be used not only to explain a number of cognitive processes of the human mind, but also to predict their dynamics in a number of particular cases.