风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges ...China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.展开更多
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
基金supported in part by Chinese National Key Technologies R&D Program(2013BAA01B03)National Natural Science Foundation of China(51190101)industrial project of State Grid Corporation of China(No.NY71-13-043).
文摘China has made many strides in large-scale development and centralized integration of wind power in recent years.The wind power penetration of some regions has reached a high level,which brings significant challenges for power system dispatch due to the inherent variability and uncertainty of wind resources.To increase the dispatch capabilities of wind power generation,the spatial smoothing effect among adjacent wind farms needs to be fully utilized.This paper presents the concept of hierarchical coordinated dispatch for wind power based on a new concept of a virtual power generator.The spatial smoothing effect of wind power is analyzed first.Next,the virtual power generator method of a wind farm cluster is defined and established.Then,the hierarchical coordinated dispatch mode is compared with an existing wind power dispatch mode for individual wind farms.Finally,the proposed concept is implemented on a simulation case to demonstrate applicability and effectiveness.