Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
Based on the applications of virtual reality technology in many fields, introducedthe virtual reality technical basic concept, structure type, related technique development,etc., tallied up applications of virtual rea...Based on the applications of virtual reality technology in many fields, introducedthe virtual reality technical basic concept, structure type, related technique development,etc., tallied up applications of virtual reality technique in the present mining industry, inquired into core techniques related software and hardware, especially the optimization inthe setup of various 3D models technique, and carried out a virtual scene to travel extensively in real-time by stereoscopic manifestation technique and so on. Then it broughtforward the solution of virtual reality technique with software and hardware to the miningindustry that can satisfy the demand of different aspects and levers. Finally, it show a fineprospect of virtual reality technique applied in the mining industry.展开更多
Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,ineffi...Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.展开更多
The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolut...The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolutionary trend of radial sand ridges in South Yellow Sea of China, this method becomes the key to reveal the correlation betweenthe seabed topography and the hydrodynamic factor——tidal current. It is proved that using the geomorphology visualization and tidal virtual reality techniques, oceanog-raphers might be able to intuitively discover the interaction pattern of sand ridges and tidal current, predicting the development of sand ridge stability in the future. Furthermore,a prototypic software system——VROcean was designed andimplemented to examine the performance of the new visualization technology on the contrast to traditional methods.展开更多
A CNC simulation system based on intemet for operation training of manufacturing facility and manufacturing process simulation is proposed. Firstly, the system framework and a rapid modeling method of CNC machine tool...A CNC simulation system based on intemet for operation training of manufacturing facility and manufacturing process simulation is proposed. Firstly, the system framework and a rapid modeling method of CNC machine tool are studied under the virtual environment based on PolyTrans and CAD software. Then, a new method is proposed to enhance and expand the interactive ability of virtual reality modeling language(VRML) by attaining communication among VRML, JavaApplet, JavaScript and Html so as to realize the virtual operation for CNC machine tool. Moreover, the algorithm of material removed simulation based on VRML Z-map is presented. The advantages of this algorithm include less memory requirement and much higher computation. Lastly, the CNC milling machine is taken as an illustrative example for the prototype development in order to validate the feasibility of the proposed approach.展开更多
In order to realize parametric simulation of three-dimensional(3D)fabric structure based on web,a 3D model describing a plain knitted fabric,in which the cross-section of the yarn is circular shape and the path of the...In order to realize parametric simulation of three-dimensional(3D)fabric structure based on web,a 3D model describing a plain knitted fabric,in which the cross-section of the yarn is circular shape and the path of the yarn is cubic B-spline curve,is proposed in this paper.With this model,the 3D simulation of the loop and of the basic structures of the knitted fabric is realized by using Virtual Reality Modeling Language(VRML).The virtual simulation scene is suitable for network transmission with freely available VRML browsers and can be translated,scaled and rotated quite arbitrarily.By using Java and External Authoring Interface(EAI)technology,the web-based interactive simulation platform of weft knitted fabric is established.The user can input type of structures,basic fabric parameters,and yarn colors interactively to obtain a more realistic simulation result in real-time.A new approach is provided to imitate the knitted fabric 3D appearance on network.展开更多
To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel t...To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.展开更多
<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and ...<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.展开更多
With the advancing digital technology and information tools in networking the core of manufacturing activities has shifted from the physical production of goods to the systematic processing of knowledge.The competitiv...With the advancing digital technology and information tools in networking the core of manufacturing activities has shifted from the physical production of goods to the systematic processing of knowledge.The competitiveness of tomorrow’s manufacturing enterprise lies in the operation of such digital factory in parallel with the physical one.This change in manufacturing in the digital age is taking place not only in Hong Kong but worldwide.This paper describes the development of establishing a digital factory laboratory in the Department of Industrial and Systems Engineering of The Hong Kong Polytechnic University.The Digital Factory is a focus for teaching research and technology transfer in the area of digital manufacturing.The paper also describes an application case of virtual manufacturing in which computer simulation models of a production line of an AC motor are developed for investigation.展开更多
Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive int...Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive integrated simulation and verification module of UG NX software,describes and discusses a novel virtual simulation system teaching(VSST)for numerically controlled machining to support the student engineering training to achieve the theoretical knowledge and practical techniques in numerically controlled machining.The findings of a study designed to evaluate the impact of VSST for the development of numerically controlled machining course are presented here.In addition,analysis of the follow-up surveys indicates that the VSST method enables to provide the concrete experience of interaction between the students and the simulation environment and to further stimulate students’interest in learning,so that the students who used VSST achieve significantly higher results than their co-workers.展开更多
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
文摘Based on the applications of virtual reality technology in many fields, introducedthe virtual reality technical basic concept, structure type, related technique development,etc., tallied up applications of virtual reality technique in the present mining industry, inquired into core techniques related software and hardware, especially the optimization inthe setup of various 3D models technique, and carried out a virtual scene to travel extensively in real-time by stereoscopic manifestation technique and so on. Then it broughtforward the solution of virtual reality technique with software and hardware to the miningindustry that can satisfy the demand of different aspects and levers. Finally, it show a fineprospect of virtual reality technique applied in the mining industry.
基金supported by the National Natural Science Foundation of China[grant no 42271424,42171397]Sichuan Transportation Science and Technology Program[grant no 2021-B-02]Chengdu Science and Technology Program[grant no 2021XT00001GX].
文摘Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.
基金This work was conducted as part of the production of the research projects supported by the National Natural Science Foundation of China (Grant No. 49701013) the Chinese National Institutes of Technology (Grant No. 96-922-03-01).
文摘The new technology of geomorphology visualization modeling and virtual reality for tidal current numerical simulation are the important methods utilized in coastal ocean research. In the project of studying the evolutionary trend of radial sand ridges in South Yellow Sea of China, this method becomes the key to reveal the correlation betweenthe seabed topography and the hydrodynamic factor——tidal current. It is proved that using the geomorphology visualization and tidal virtual reality techniques, oceanog-raphers might be able to intuitively discover the interaction pattern of sand ridges and tidal current, predicting the development of sand ridge stability in the future. Furthermore,a prototypic software system——VROcean was designed andimplemented to examine the performance of the new visualization technology on the contrast to traditional methods.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing (ICFDM'2006)This project is supported by National Natural Science Foundation of China (No.50775047)Scientific and Technological Foundation of Guangdong Province,China(No.2004B10201032).
文摘A CNC simulation system based on intemet for operation training of manufacturing facility and manufacturing process simulation is proposed. Firstly, the system framework and a rapid modeling method of CNC machine tool are studied under the virtual environment based on PolyTrans and CAD software. Then, a new method is proposed to enhance and expand the interactive ability of virtual reality modeling language(VRML) by attaining communication among VRML, JavaApplet, JavaScript and Html so as to realize the virtual operation for CNC machine tool. Moreover, the algorithm of material removed simulation based on VRML Z-map is presented. The advantages of this algorithm include less memory requirement and much higher computation. Lastly, the CNC milling machine is taken as an illustrative example for the prototype development in order to validate the feasibility of the proposed approach.
基金Jiangsu Natural Science Foundation of University,China(No.07KJD540178)Foundation of Nantong Science and Technology of China(No.K2007009)Graduate Innovation Project of Nantong University,China(No.YKC09056)
文摘In order to realize parametric simulation of three-dimensional(3D)fabric structure based on web,a 3D model describing a plain knitted fabric,in which the cross-section of the yarn is circular shape and the path of the yarn is cubic B-spline curve,is proposed in this paper.With this model,the 3D simulation of the loop and of the basic structures of the knitted fabric is realized by using Virtual Reality Modeling Language(VRML).The virtual simulation scene is suitable for network transmission with freely available VRML browsers and can be translated,scaled and rotated quite arbitrarily.By using Java and External Authoring Interface(EAI)technology,the web-based interactive simulation platform of weft knitted fabric is established.The user can input type of structures,basic fabric parameters,and yarn colors interactively to obtain a more realistic simulation result in real-time.A new approach is provided to imitate the knitted fabric 3D appearance on network.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China(Grant No.200815)the Research Foundation for Talented Scholars ofHarbin (Grant No.2008RFQXS061)
文摘To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.
文摘<strong>Aim:</strong> To carry out a 3D vector reconstruction of the typical cervical vertebra from anatomical sections of the “Korean Visible Human” for educational purposes. <strong>Material and Methods:</strong> The anatomical subject was a 33-year-old Korean man who died of leukemia. He was 164 cm tall and weighed 55 kg. This man donated his body to science. Her body was frozen and cut into several anatomical sections after an MRI and CT scan. These anatomical sections were made using a special saw called a 0.2 mm thick cryomacrotome. Thus 8100 cuts were obtained. Only the sections numbered 940 to 1200 were used for our study. A segmentation by manual contouring of the different parts of the typical cervical vertebra was made using the software Winsurf version 3.5 on a laptop PC running Windows 7 equipped with a Ram of 8 gigas. <strong>Results:</strong> Our 3D vector model of the typical cervical vertebra is easily manipulated using the Acrobat 3DPDF interface. Each part of the vertebra accessible in a menu can be displayed, hidden or made transparent, and 3D labels are available as well as educational menus for learning anatomy. <strong>Conclusion: </strong>This original work constitutes a remarkable educational tool for the anatomical study of the typical cervical vertebra and can also be used as a 3D atlas for simulation purposes for training in therapeutic gestures.
文摘With the advancing digital technology and information tools in networking the core of manufacturing activities has shifted from the physical production of goods to the systematic processing of knowledge.The competitiveness of tomorrow’s manufacturing enterprise lies in the operation of such digital factory in parallel with the physical one.This change in manufacturing in the digital age is taking place not only in Hong Kong but worldwide.This paper describes the development of establishing a digital factory laboratory in the Department of Industrial and Systems Engineering of The Hong Kong Polytechnic University.The Digital Factory is a focus for teaching research and technology transfer in the area of digital manufacturing.The paper also describes an application case of virtual manufacturing in which computer simulation models of a production line of an AC motor are developed for investigation.
基金the support from Zhejiang Education Science Planning Project(Grant No.2015SCG356)Zhejiang Public Project of Science and Technology Department(Grant No.2016C31044)Zhejiang Province Soft Science Research Project(Grant No.2016C35040).
文摘Virtual simulation technology has become one of the most popular technologies in the field of engineering education after the multimedia information technology in recent years.This paper,based on the comprehensive integrated simulation and verification module of UG NX software,describes and discusses a novel virtual simulation system teaching(VSST)for numerically controlled machining to support the student engineering training to achieve the theoretical knowledge and practical techniques in numerically controlled machining.The findings of a study designed to evaluate the impact of VSST for the development of numerically controlled machining course are presented here.In addition,analysis of the follow-up surveys indicates that the VSST method enables to provide the concrete experience of interaction between the students and the simulation environment and to further stimulate students’interest in learning,so that the students who used VSST achieve significantly higher results than their co-workers.