<div style="text-align:justify;"> <span style="font-family:Verdana;">The purpose of this research is to develop an immersive virtual fitness center as an intervention to promote physica...<div style="text-align:justify;"> <span style="font-family:Verdana;">The purpose of this research is to develop an immersive virtual fitness center as an intervention to promote physical activity and examine its impacts on users’ exercise plans and exercise behaviors. The virtual reality (VR)-based intervention includes three main features: enabling the users to control their avatar, personalizing the avatar to look the same as the user, and visualizing the positive consequences of exercising. We conducted an experiment to randomly assign participants to two treatment groups: experiencing either the self or another person losing weight because of exercising in the virtual environment. The findings demonstrated that the self-avatar group exercised more in the voluntary section than the other-avatar group. However, participants in the self-avatar condition perceived a lower level of sense of presence compared to participants in the other-avatar condition. Compared to people in the control condition who watched and followed the exercise from a workout video, those who exercised in the virtual fitness center, regardless of whether the avatar was based on the self’s image or another person’s image, planned to spend more time on exercising in the following week. Theoretical and practical implications for using VR technology to promote health-related behavioral change, and why personalization decreases perceived sense of presence in the virtual environment are discussed.</span> </div>展开更多
Background and Purpose: Virtual reality (VR) is an innovative technology that shows promise in the assistance of physical therapy (PT). This case report explores the use of virtual reality with a patient suffering fro...Background and Purpose: Virtual reality (VR) is an innovative technology that shows promise in the assistance of physical therapy (PT). This case report explores the use of virtual reality with a patient suffering from unilateral vestibular hypofunction (UVH). Case Description: The patient is a 50-year-old male who was referred to physical therapy following a motor vehicle accident. The patient was diagnosed with having an acute left UVH, accompanied by reports of dizziness, imbalance and gait disturbances which impaired him from his work in construction. Intervention: The patient was seen two to three times a week for 40-minute sessions along with an individualized home exercise program. Interventions included vestibular rehabilitation exercises, balance training, gait training, and VR. The goals of VR were to provide task-specific simulations to improve postural balance, decrease anxiety through exposure therapy, and improve smooth eye pursuits to improve static balance. Outcomes: Outcomes used included subjective questionnaires such as the Activities-Specific Balance Confidence survey and the Dizziness Handicap Inventory (DHI) as well as functional tests like the Sensory Organization Test, Motor Control Test, and the Functional Gait Assessment (FGA). Outcome measures were performed at initial evaluation, at the 10th visit, and again at discharge. Notable improvements were seen on DHI and FGA scores. Conclusion: Dizziness, confidence, balance, and gait improved following vestibular rehabilitation combined with VR. Outcomes of this case suggest that virtual reality in conjunction with vestibular rehabilitation therapy is effective in improving deficits of unilateral vestibular hypofunction. Additionally, the use of VR in this case report suggests this can be an effective tool for intervention to facilitate patient-specific goals.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
Traditional Jiangnan garden architecture in China offers distinct spatial impressions that hold significance in contemporary architectural expression.Yet,the understanding and analysis of these spaces have historicall...Traditional Jiangnan garden architecture in China offers distinct spatial impressions that hold significance in contemporary architectural expression.Yet,the understanding and analysis of these spaces have historically relied on subjective,sensory experiences,often lacking precise,quantitative research.Consequently,establishing clear logical connections between visual cognition and emotional perception within these spatial experiences has been a challenge.This study introduces virtual reality spatial simulation and quantification techniques,summarizing key Jiangnan garden spatial characteristics and prototypes.It includes a series of virtual reality experiments focusing on cognitive experiences within Jiangnan garden spaces.A comprehensive analysis of isovisit quantitative data,questionnaires,and behavioral information explores the logical relationships between emotional perceptions(calmness,surprise,interest,confusion)and visual cognition qualities(openness,complexity,theatricality)in garden space impressions.This research aims to reveal deeper connections between garden space qualities,visual cognition,and emotional experiences,offering valuable insights for the application of historical traditional spatial features in contemporary architecture.It bridges the gap between sensory experiences and rational analysis,enhancing our understanding of the intricate spatial narratives within Jiangnan gardens.展开更多
Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive...Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were(1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and(2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed.展开更多
The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a ...The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space. Last, the prototype system, surveying & mapping virtual Reality (SMVR), is developed, and the space simulation above is realized. By use of SMVR, the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.展开更多
Background Mixed-reality technologies,including virtual reality(VR)and augmented reality(AR),are considered to be promising potential tools for science teaching and learning processes that could foster positive emotio...Background Mixed-reality technologies,including virtual reality(VR)and augmented reality(AR),are considered to be promising potential tools for science teaching and learning processes that could foster positive emotions,motivate autonomous learning,and improve learning outcomes.Methods In this study,a technology-aided biological microscope learning system based on VR/AR is presented.The structure of the microscope is described in a detailed three-dimensional(3D)model,each component being represented with their topological interrelationships and associations among them being established.The interactive behavior of the model was specified,and a standard operating guide was compiled.The motion control of components was simulated based on collision detection.Combined with immersive VR equipment and AR technology,we developed a virtual microscope subsystem and a mobile virtual microscope guidance system.Results The system consisted of a VR subsystem and an AR subsystem.The focus of the VR subsystem was to simulate operating the microscope and associated interactive behaviors that allowed users to observe and operate the components of the 3D microscope model by means of natural interactions in an immersive scenario.The AR subsystem allowed participants to use a mobile terminal that took a picture of a microscope from a textbook and then displayed the structure and functions of the instrument,as well as the relevant operating guidance.This flexibly allowed students to use the system before or after class without time and space constraints.The system allowed users to switch between the VR and AR subsystems.Conclusions The system is useful for helping learners(especially K-12 students)to recognize a microscope's structure and grasp the required operational skills by simulating operations using an interactive process.In the future,such technology-assisted education would be a successful learning platform in an open learning space.展开更多
In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual m...In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual models have yet to be differentiated. The answers to these questions are too complex to account for in all aspects. Thus, this study only focuses on the differences in spatial understanding between physical and virtual models. In particular, it emphasizes on the perception of scale. For our experiment, respondents were shown a physical model and a virtual model consecutively. A questionnaire was then used to ask the respondents to evaluate these models objectively and to establish which model was more accurate in conveying object size. Compared with the virtual model, the physical model tended to enable cluicker and more accurate comDarisons of building heights.展开更多
Background With the aim of addressing the difficulty in identifying temperatures in virtual chemistry experiments,we propose a temperature-sensing simulation method of virtual chemistry experiments.Methods We construc...Background With the aim of addressing the difficulty in identifying temperatures in virtual chemistry experiments,we propose a temperature-sensing simulation method of virtual chemistry experiments.Methods We construct a virtual chemistry experiment temperature simulation platform,based on which a wearable temperature generation device is developed.The typical middle school virtual experiments of concentrated sulfuric acid dilution and ammonium nitrate dissolution are conducted to verify the actual effect of the device.Results The platform is capable to indicate near real-world experimental situations.The performance of the device not only meets the temperature sensing characteristics of human skin,but also matches the temperature change of virtual chemistry experiments in real-time.Conclusions It is demonstrated that this temperature-sensing simulation method can represent exothermic or endothermic chemistry experiments,which is beneficial for students to gain understanding of the principles of thermal energy transformation in chemical reactions,thus avoiding the danger that may be posed in the course of traditional teaching of chemistry experiments effectively.Although this method does not have a convenient enough operation for users,the immersion of virtual chemical experiments can be enhanced.展开更多
Virtual simulation experiment teaching gradually becomes the trend of the computer-related education practice.Through analyzing the problems existed in current computer experiment teaching,this paper proposes the idea...Virtual simulation experiment teaching gradually becomes the trend of the computer-related education practice.Through analyzing the problems existed in current computer experiment teaching,this paper proposes the idea of building virtual simulation experiment platform based on 3R-4A computer system and clarifies the design technology,including frame,characteristic and innovation,resource sharing and management,condition protection and so on.展开更多
With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educationa...With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educational institutions have adopted virtual simulation technology.A typical teaching mechanism is to exploit Virtual Reality(VR)technology,which affords participants an immersive experience.Unquestionably,such a VRbased mode is highly approved.However,the performance of this technology requires further optimization.On one hand,for VR 360video,the current intraframe decision cannot adapt to rapid response demands.On the other hand,the generated data size is considerably large and fast computation may not be realized,depending on the local VR device.Therefore,this study proposes an improved teaching mechanism empowered by edge computing–driven VR,called VE4T,that involves two parts.First,an intraframe decision algorithm for VR 360videos is devised to realize the rapid responses.Second,an edge computing framework is proposed to offload some tasks to an edge server for computation,where a task scheduling strategy is developed to check whether a task needs to be offloaded.Finally,experiments are performed using a practical teaching scenario with some VR devices.The obtained results demonstrate that VE4T is more efficient than existing mechanisms.展开更多
Aiming at the safety problems of toxic,flammable and explosive chemicals used in middle school chemical experiments,such as human poi-soning,skin corrosion,fire or explosion caused by improper experimental operation,a...Aiming at the safety problems of toxic,flammable and explosive chemicals used in middle school chemical experiments,such as human poi-soning,skin corrosion,fire or explosion caused by improper experimental operation,a virtual simulation method of chemical experiments based on unity is proposed.Due to the need to analyze and compare the data in chemical experiments,summarize the experimental characteristics and data relevance.Therefore,based on the Apriori algorithm,this method deeply excavates the data obtained in the chemical experiment,uses Maya to model the experimental environment,uses unity to design the interactive functions in the experimental process,and uses visual effect graph technology,shader graph technology and other methods to realize the special effect simula-tion of various chemical experiments.With this method,the virtual simula-tion prototype system of middle school chemistry experiment is developed.The example shows that this method can vividly and realistically reproduce the simulation effect of chemical experiment,find the correlation between the experimental data,classification,properties and the overall characteristics of the data,describe and predict the development trend of the data,so as to make better use of these data to provide support for chemical experiment,and not only solve the problems of poisoning,corrosion of skin and It also solves the problems that it is difficult to scientifically compare data and find data relevance in traditional chemical experiments.展开更多
This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virt...This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.展开更多
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">The purpose of this research is to develop an immersive virtual fitness center as an intervention to promote physical activity and examine its impacts on users’ exercise plans and exercise behaviors. The virtual reality (VR)-based intervention includes three main features: enabling the users to control their avatar, personalizing the avatar to look the same as the user, and visualizing the positive consequences of exercising. We conducted an experiment to randomly assign participants to two treatment groups: experiencing either the self or another person losing weight because of exercising in the virtual environment. The findings demonstrated that the self-avatar group exercised more in the voluntary section than the other-avatar group. However, participants in the self-avatar condition perceived a lower level of sense of presence compared to participants in the other-avatar condition. Compared to people in the control condition who watched and followed the exercise from a workout video, those who exercised in the virtual fitness center, regardless of whether the avatar was based on the self’s image or another person’s image, planned to spend more time on exercising in the following week. Theoretical and practical implications for using VR technology to promote health-related behavioral change, and why personalization decreases perceived sense of presence in the virtual environment are discussed.</span> </div>
文摘Background and Purpose: Virtual reality (VR) is an innovative technology that shows promise in the assistance of physical therapy (PT). This case report explores the use of virtual reality with a patient suffering from unilateral vestibular hypofunction (UVH). Case Description: The patient is a 50-year-old male who was referred to physical therapy following a motor vehicle accident. The patient was diagnosed with having an acute left UVH, accompanied by reports of dizziness, imbalance and gait disturbances which impaired him from his work in construction. Intervention: The patient was seen two to three times a week for 40-minute sessions along with an individualized home exercise program. Interventions included vestibular rehabilitation exercises, balance training, gait training, and VR. The goals of VR were to provide task-specific simulations to improve postural balance, decrease anxiety through exposure therapy, and improve smooth eye pursuits to improve static balance. Outcomes: Outcomes used included subjective questionnaires such as the Activities-Specific Balance Confidence survey and the Dizziness Handicap Inventory (DHI) as well as functional tests like the Sensory Organization Test, Motor Control Test, and the Functional Gait Assessment (FGA). Outcome measures were performed at initial evaluation, at the 10th visit, and again at discharge. Notable improvements were seen on DHI and FGA scores. Conclusion: Dizziness, confidence, balance, and gait improved following vestibular rehabilitation combined with VR. Outcomes of this case suggest that virtual reality in conjunction with vestibular rehabilitation therapy is effective in improving deficits of unilateral vestibular hypofunction. Additionally, the use of VR in this case report suggests this can be an effective tool for intervention to facilitate patient-specific goals.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
文摘Traditional Jiangnan garden architecture in China offers distinct spatial impressions that hold significance in contemporary architectural expression.Yet,the understanding and analysis of these spaces have historically relied on subjective,sensory experiences,often lacking precise,quantitative research.Consequently,establishing clear logical connections between visual cognition and emotional perception within these spatial experiences has been a challenge.This study introduces virtual reality spatial simulation and quantification techniques,summarizing key Jiangnan garden spatial characteristics and prototypes.It includes a series of virtual reality experiments focusing on cognitive experiences within Jiangnan garden spaces.A comprehensive analysis of isovisit quantitative data,questionnaires,and behavioral information explores the logical relationships between emotional perceptions(calmness,surprise,interest,confusion)and visual cognition qualities(openness,complexity,theatricality)in garden space impressions.This research aims to reveal deeper connections between garden space qualities,visual cognition,and emotional experiences,offering valuable insights for the application of historical traditional spatial features in contemporary architecture.It bridges the gap between sensory experiences and rational analysis,enhancing our understanding of the intricate spatial narratives within Jiangnan gardens.
基金support by Conselho Nacional de Desenvolvimento Científico e Tecnologico(CNPq)Fundacao de AmparoàPesquisa do Estado do Rio de Janeiro(FAPERJ)+1 种基金Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES)Financiadora de Estudos e Projetos(Finep)
文摘Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were(1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and(2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed.
文摘The theoretical framework of visual simulation in virtual reality is discussed. The new concept of visual image space is supposed. On the basis of visual image space, in visual perceptive sense, VR is considered as a spatial simulation. The objective of the spatial simulation is to transform physical space to visual image space. Last, the prototype system, surveying & mapping virtual Reality (SMVR), is developed, and the space simulation above is realized. By use of SMVR, the real 3D representation, 3D visual analysis, virtual plan and designs can be implemented.
基金the National Key Research and Development Program of China(2018YFB1004905).
文摘Background Mixed-reality technologies,including virtual reality(VR)and augmented reality(AR),are considered to be promising potential tools for science teaching and learning processes that could foster positive emotions,motivate autonomous learning,and improve learning outcomes.Methods In this study,a technology-aided biological microscope learning system based on VR/AR is presented.The structure of the microscope is described in a detailed three-dimensional(3D)model,each component being represented with their topological interrelationships and associations among them being established.The interactive behavior of the model was specified,and a standard operating guide was compiled.The motion control of components was simulated based on collision detection.Combined with immersive VR equipment and AR technology,we developed a virtual microscope subsystem and a mobile virtual microscope guidance system.Results The system consisted of a VR subsystem and an AR subsystem.The focus of the VR subsystem was to simulate operating the microscope and associated interactive behaviors that allowed users to observe and operate the components of the 3D microscope model by means of natural interactions in an immersive scenario.The AR subsystem allowed participants to use a mobile terminal that took a picture of a microscope from a textbook and then displayed the structure and functions of the instrument,as well as the relevant operating guidance.This flexibly allowed students to use the system before or after class without time and space constraints.The system allowed users to switch between the VR and AR subsystems.Conclusions The system is useful for helping learners(especially K-12 students)to recognize a microscope's structure and grasp the required operational skills by simulating operations using an interactive process.In the future,such technology-assisted education would be a successful learning platform in an open learning space.
文摘In the digital age, physical models are still used as major tools in architectural and urban design processes. The reason why designers still use physical models remains unclear. In addition, physical and 3D virtual models have yet to be differentiated. The answers to these questions are too complex to account for in all aspects. Thus, this study only focuses on the differences in spatial understanding between physical and virtual models. In particular, it emphasizes on the perception of scale. For our experiment, respondents were shown a physical model and a virtual model consecutively. A questionnaire was then used to ask the respondents to evaluate these models objectively and to establish which model was more accurate in conveying object size. Compared with the virtual model, the physical model tended to enable cluicker and more accurate comDarisons of building heights.
基金the National Key Research and Development Program of China(2018YFB1004901)Zhejiang Natural Science Fund Project of China(LY20F020019,LQ19F020012,LQ20F020001)+1 种基金Zhejiang Basic Public Welfare Research Project of China(LGF19E050005)and Major Scientific Research Project of Zhejiang Lab(2019MC0AD01).
文摘Background With the aim of addressing the difficulty in identifying temperatures in virtual chemistry experiments,we propose a temperature-sensing simulation method of virtual chemistry experiments.Methods We construct a virtual chemistry experiment temperature simulation platform,based on which a wearable temperature generation device is developed.The typical middle school virtual experiments of concentrated sulfuric acid dilution and ammonium nitrate dissolution are conducted to verify the actual effect of the device.Results The platform is capable to indicate near real-world experimental situations.The performance of the device not only meets the temperature sensing characteristics of human skin,but also matches the temperature change of virtual chemistry experiments in real-time.Conclusions It is demonstrated that this temperature-sensing simulation method can represent exothermic or endothermic chemistry experiments,which is beneficial for students to gain understanding of the principles of thermal energy transformation in chemical reactions,thus avoiding the danger that may be posed in the course of traditional teaching of chemistry experiments effectively.Although this method does not have a convenient enough operation for users,the immersion of virtual chemical experiments can be enhanced.
文摘Virtual simulation experiment teaching gradually becomes the trend of the computer-related education practice.Through analyzing the problems existed in current computer experiment teaching,this paper proposes the idea of building virtual simulation experiment platform based on 3R-4A computer system and clarifies the design technology,including frame,characteristic and innovation,resource sharing and management,condition protection and so on.
基金supported by the Approved Project of Jilin Undergraduate Higher Education and Teaching Reform 2020(General Project).
文摘With the rapid development of network and communication techniques,the teaching forms have become diversified.To enhance the education experience and improve the teaching environment,an increasing number of educational institutions have adopted virtual simulation technology.A typical teaching mechanism is to exploit Virtual Reality(VR)technology,which affords participants an immersive experience.Unquestionably,such a VRbased mode is highly approved.However,the performance of this technology requires further optimization.On one hand,for VR 360video,the current intraframe decision cannot adapt to rapid response demands.On the other hand,the generated data size is considerably large and fast computation may not be realized,depending on the local VR device.Therefore,this study proposes an improved teaching mechanism empowered by edge computing–driven VR,called VE4T,that involves two parts.First,an intraframe decision algorithm for VR 360videos is devised to realize the rapid responses.Second,an edge computing framework is proposed to offload some tasks to an edge server for computation,where a task scheduling strategy is developed to check whether a task needs to be offloaded.Finally,experiments are performed using a practical teaching scenario with some VR devices.The obtained results demonstrate that VE4T is more efficient than existing mechanisms.
文摘Aiming at the safety problems of toxic,flammable and explosive chemicals used in middle school chemical experiments,such as human poi-soning,skin corrosion,fire or explosion caused by improper experimental operation,a virtual simulation method of chemical experiments based on unity is proposed.Due to the need to analyze and compare the data in chemical experiments,summarize the experimental characteristics and data relevance.Therefore,based on the Apriori algorithm,this method deeply excavates the data obtained in the chemical experiment,uses Maya to model the experimental environment,uses unity to design the interactive functions in the experimental process,and uses visual effect graph technology,shader graph technology and other methods to realize the special effect simula-tion of various chemical experiments.With this method,the virtual simula-tion prototype system of middle school chemistry experiment is developed.The example shows that this method can vividly and realistically reproduce the simulation effect of chemical experiment,find the correlation between the experimental data,classification,properties and the overall characteristics of the data,describe and predict the development trend of the data,so as to make better use of these data to provide support for chemical experiment,and not only solve the problems of poisoning,corrosion of skin and It also solves the problems that it is difficult to scientifically compare data and find data relevance in traditional chemical experiments.
文摘This paper investigates the application of Natural Language Processing (NLP) in AI interaction design for virtual experiences. It analyzes the impact of various interaction methods on user experience, integrating Virtual Reality (VR) and Augmented Reality (AR) technologies to achieve more natural and intuitive interaction models through NLP techniques. Through experiments and data analysis across multiple technical models, this study proposes an innovative design solution based on natural language interaction and summarizes its advantages and limitations in immersive experiences.