Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One ...Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.展开更多
Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient...Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
基金supported by the National Basic Research Program of China (973 Program) under Grant 2013CB329104the National Natural Science Foundation of China under Grant 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.
文摘Cloud data centers face the largest energy consumption.In order to save energy consumption in cloud data centers,cloud service providers adopt a virtual machine migration strategy.In this paper,we propose an efficient virtual machine placement strategy(VMP-SI)based on virtual machine selection and integration.Our proposed VMP-SI strategy divides the migration process into three phases:physical host state detection,virtual machine selection and virtual machine placement.The local regression robust(LRR)algorithm and minimum migration time(MMT)policy are individual used in the first and section phase,respectively.Then we design a virtual machine migration strategy that integrates the process of virtual machine selection and placement,which can ensure a satisfactory utilization efficiency of the hardware resources of the active physical host.Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.