期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
未知环境下基于虚拟子目标的对立Q学习机器人路径规划
被引量:
4
1
作者
汪盛民
林伟
曾碧
《广东工业大学学报》
CAS
2019年第1期51-56,62,共7页
针对Q学习算法在复杂的未知环境下Q值更新速度慢,容易产生维数灾难等问题,提出了一种未知环境下基于虚拟子目标的对立Q学习机器人路径规划算法.该算法根据移动机器人探索过的状态轨迹,建立了2个状态链分别记录状态-动作对和状态-反向动...
针对Q学习算法在复杂的未知环境下Q值更新速度慢,容易产生维数灾难等问题,提出了一种未知环境下基于虚拟子目标的对立Q学习机器人路径规划算法.该算法根据移动机器人探索过的状态轨迹,建立了2个状态链分别记录状态-动作对和状态-反向动作对,并将每个单链当前状态的Q值,依次反馈影响前一状态的Q值,直到状态链的头端.同时,在局部探测域内通过寻找最优虚拟子目标的方法解决了大规模环境下Q学习容易产生维数灾难的问题.实验结果表明,在复杂的未知环境中,该算法可以有效地加快算法学习的收敛速度,提高学习效率,以较优的路径完成机器人导航任务.
展开更多
关键词
移动机器人
虚拟子目标
对立Q学习
未知环境
下载PDF
职称材料
题名
未知环境下基于虚拟子目标的对立Q学习机器人路径规划
被引量:
4
1
作者
汪盛民
林伟
曾碧
机构
广东工业大学计算机学院
出处
《广东工业大学学报》
CAS
2019年第1期51-56,62,共7页
基金
广东省产学研合作专项项目(2014B090904080)
广东省应用型科技研发专项项目(2015B090922012)
东莞市产学研合作项目(2015509109107)
文摘
针对Q学习算法在复杂的未知环境下Q值更新速度慢,容易产生维数灾难等问题,提出了一种未知环境下基于虚拟子目标的对立Q学习机器人路径规划算法.该算法根据移动机器人探索过的状态轨迹,建立了2个状态链分别记录状态-动作对和状态-反向动作对,并将每个单链当前状态的Q值,依次反馈影响前一状态的Q值,直到状态链的头端.同时,在局部探测域内通过寻找最优虚拟子目标的方法解决了大规模环境下Q学习容易产生维数灾难的问题.实验结果表明,在复杂的未知环境中,该算法可以有效地加快算法学习的收敛速度,提高学习效率,以较优的路径完成机器人导航任务.
关键词
移动机器人
虚拟子目标
对立Q学习
未知环境
Keywords
mobile robot
virtual subtarget
opposite Q learning
unknown environment
分类号
TP242.6 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
未知环境下基于虚拟子目标的对立Q学习机器人路径规划
汪盛民
林伟
曾碧
《广东工业大学学报》
CAS
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部