An exoskeleton force feedback dataglove is developed, which uses the pneumatic artificial muscles as actuators. On the basis of the simplified hand model, the motion equation is deduced according to the theory of Dena...An exoskeleton force feedback dataglove is developed, which uses the pneumatic artificial muscles as actuators. On the basis of the simplified hand model, the motion equation is deduced according to the theory of Denavit-Hartenberg. The model of the equivalent contact forces exerted by the object on the finger is proposed. By the principle of virtual work, the static equilibrium of finger is established. The force Jacobian matrix of finger is calculated, and then the joint torques of the finger when grasping objects are obtained. The theory and structure of the force feedback datagolve are introduced. Based on the theory of motion stabilization of four-bar linkage, the flexion angles of joints are measured. The torques on finger joints caused by the output forces of pneumatic artificial muscles are calculated. The output forces of pneumatic artificial muscle, whose values are controlled by its inner pressure, can be calculated by the joint torques of the finger when grasping objects. The arms of force, driving torques and the needed output forces of pneumatic muscle are calculated for each joint of the index finger. The criterion of output force of pneumatic muscle is given.展开更多
For a strip transmission line shielded by rectangular walls, the Green抯 function is helpful to construct the variation expression of the electrostatic energy. Thomson theorem is employed to determine the charge distr...For a strip transmission line shielded by rectangular walls, the Green抯 function is helpful to construct the variation expression of the electrostatic energy. Thomson theorem is employed to determine the charge distribution on the strip. The electrostatic force on each side of the rectangular shield wall is achieved by using the principle of virtual work. The result is easy to be obtained by computerized calculation.展开更多
A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance ...A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.展开更多
The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and ele...The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.展开更多
电机内电磁力密度的精确计算对电机的结构设计及故障诊断具有重要意义,然而目前尚缺乏简便实用的电磁力密度数值计算方法。为此,在有限元分析方法(finite element method,FEM)和局部虚位移法的基础上,按虚功等效的原则建立由等效节点力...电机内电磁力密度的精确计算对电机的结构设计及故障诊断具有重要意义,然而目前尚缺乏简便实用的电磁力密度数值计算方法。为此,在有限元分析方法(finite element method,FEM)和局部虚位移法的基础上,按虚功等效的原则建立由等效节点力进一步计算介质内部电磁力密度和不同介质交界面处电磁应力的数学模型,进而推导了二维平行平面场条件下的具体计算公式。实例计算表明,与其它算法相比,该方法在相同剖分下具有较高的计算精度,且计算结果受剖分的影响较小。展开更多
永磁同步直线电机(permanentmagnetsynchronous linear motor,PMSLM)由于推力波动的存在,影响其在精密数控加工设备中的应用。该文结合PMSLM的结构和运动特点,设计一种电磁阻尼–弹簧系统以实现推力波动的抑制。首先,分别建立PMSLM及电...永磁同步直线电机(permanentmagnetsynchronous linear motor,PMSLM)由于推力波动的存在,影响其在精密数控加工设备中的应用。该文结合PMSLM的结构和运动特点,设计一种电磁阻尼–弹簧系统以实现推力波动的抑制。首先,分别建立PMSLM及电磁阻尼–弹簧系统的动力学模型,分析电磁阻尼–弹簧系统实现推力波动抑制的过程;其次,以推力波动作为电磁阻尼–弹簧系统的激励,采用胡克定律分析弹簧产生的弹力,采用虚功原理分析电磁阻尼器产生的电磁阻尼力,进而得到抑制推力波动的抑制力;然后,通过仿真分析验证解析的正确性,并优选电磁阻尼–弹簧系统的关键参数;最后,通过样机测试验证所提出的方法在不同速度和负载下均能够有效的抑制推力波动。展开更多
基金This project is supported by National Natural Science Foundation of China(No.50375034).
文摘An exoskeleton force feedback dataglove is developed, which uses the pneumatic artificial muscles as actuators. On the basis of the simplified hand model, the motion equation is deduced according to the theory of Denavit-Hartenberg. The model of the equivalent contact forces exerted by the object on the finger is proposed. By the principle of virtual work, the static equilibrium of finger is established. The force Jacobian matrix of finger is calculated, and then the joint torques of the finger when grasping objects are obtained. The theory and structure of the force feedback datagolve are introduced. Based on the theory of motion stabilization of four-bar linkage, the flexion angles of joints are measured. The torques on finger joints caused by the output forces of pneumatic artificial muscles are calculated. The output forces of pneumatic artificial muscle, whose values are controlled by its inner pressure, can be calculated by the joint torques of the finger when grasping objects. The arms of force, driving torques and the needed output forces of pneumatic muscle are calculated for each joint of the index finger. The criterion of output force of pneumatic muscle is given.
基金Funded by the Key Research Foundation of Sichuan Education Commission(No. 2002A046 )
文摘For a strip transmission line shielded by rectangular walls, the Green抯 function is helpful to construct the variation expression of the electrostatic energy. Thomson theorem is employed to determine the charge distribution on the strip. The electrostatic force on each side of the rectangular shield wall is achieved by using the principle of virtual work. The result is easy to be obtained by computerized calculation.
文摘A geometrical theorem for the static equilibrium of a common-point-force system has been proven by means of virtual-work principle: The equilibrium point of a common-point force system has a minimal weighted distance summation to every fixed point arbitrarily given on each force line with a weighing factor proportional to corresponding force value. Especially the mechanical simulating technique for its inverse problem has been realized by means of pulley block. The conclusions for the inverse problem derived from mechanic method are in accordance with that given by the pure mathematical method, and the self-consistence of the theorem and its inverse problem has been demonstrated. Some application examples in engineering, economy and mathematics have been discussed, especially the possible application in the research of molecular structure, has also been predicted.
文摘The principle of virtual displacements(PVDs)extended to elasto-thermo-electric problems includes virtual internal elastic,thermal and electric works.The governing equations have displacement vector,temperature and electric potential as primary variables of the problem,and the elasto-thermal,elasto-electric and pure elastic problems are obtained as particular cases by deleting the appropriate contributions in the general elasto-thermo-electric variational statement.The most sensitive issue is given by thermal coupling because the thermo-elastic and thermo-electric effects change depending on the type of load and analysis considered(mechanical load,temperature or electric potential imposed and free vibration analysis).This feature means that the form of the virtual internal thermal work in such variational statements changes depending on the analysis performed and the load applied.Results about multilayered plates and shells suggest the appropriate extension of the variational statement for each analysis,and they give an exhaustive explanation for several forms of the PVD proposed.
文摘电机内电磁力密度的精确计算对电机的结构设计及故障诊断具有重要意义,然而目前尚缺乏简便实用的电磁力密度数值计算方法。为此,在有限元分析方法(finite element method,FEM)和局部虚位移法的基础上,按虚功等效的原则建立由等效节点力进一步计算介质内部电磁力密度和不同介质交界面处电磁应力的数学模型,进而推导了二维平行平面场条件下的具体计算公式。实例计算表明,与其它算法相比,该方法在相同剖分下具有较高的计算精度,且计算结果受剖分的影响较小。
文摘永磁同步直线电机(permanentmagnetsynchronous linear motor,PMSLM)由于推力波动的存在,影响其在精密数控加工设备中的应用。该文结合PMSLM的结构和运动特点,设计一种电磁阻尼–弹簧系统以实现推力波动的抑制。首先,分别建立PMSLM及电磁阻尼–弹簧系统的动力学模型,分析电磁阻尼–弹簧系统实现推力波动抑制的过程;其次,以推力波动作为电磁阻尼–弹簧系统的激励,采用胡克定律分析弹簧产生的弹力,采用虚功原理分析电磁阻尼器产生的电磁阻尼力,进而得到抑制推力波动的抑制力;然后,通过仿真分析验证解析的正确性,并优选电磁阻尼–弹簧系统的关键参数;最后,通过样机测试验证所提出的方法在不同速度和负载下均能够有效的抑制推力波动。