期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Traffic-Aware VDC Embedding in Data Center: A Case Study of FatTree 被引量:2
1
作者 LUO Shouxi YU Hongfang +2 位作者 LI Lemin LIAO Dan SUN Gang 《China Communications》 SCIE CSCD 2014年第7期142-152,共11页
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph... Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation. 展开更多
关键词 virtual data center EMBEDDING switch capacity fat-tree
下载PDF
Multi-Dimensional Aware Scheduling for Co-optimizing Utilization in Data Center 被引量:1
2
作者 孙鑫 徐鹏 +1 位作者 双锴 苏森 《China Communications》 SCIE CSCD 2011年第6期19-27,共9页
Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory... Resource Scheduling is crucial to data centers. However, most previous works focus only on one-dimensional resource models which ignoring the fact that multiple resources simultaneously utilized, including CPU, memory and network bandwidth. As cloud computing allows uncoordinated and heterogeneous users to share a data center, competition for multiple resources has become increasingly severe. Motivated by the differences on integrated utilization obtained from different packing schemes, in this paper we take the scheduling problem as a multi-dimensional combinatorial optimization problem with constraint satisfaction. With NP hardness, we present Multiple attribute decision based Integrated Resource Scheduling (MIRS), and a novel heuristic algorithm to gain the approximate optimal solution. Refers to simulation results, in face of various workload sets, our algorithm has significant superiorities in terms of efficiency and performance compared with previous methods. 展开更多
关键词 virtual data center resource scheduling multiple attribute decision making EFFICIENCY performance
下载PDF
Efficient Multi-Tenant Virtual Machine Allocation in Cloud Data Centers 被引量:2
3
作者 Jiaxin Li Dongsheng Li +1 位作者 Yuming Ye Xicheng Lu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第1期81-89,共9页
Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and th... Virtual Machine(VM) allocation for multiple tenants is an important and challenging problem to provide efficient infrastructure services in cloud data centers. Tenants run applications on their allocated VMs, and the network distance between a tenant's VMs may considerably impact the tenant's Quality of Service(Qo S). In this study, we define and formulate the multi-tenant VM allocation problem in cloud data centers, considering the VM requirements of different tenants, and introducing the allocation goal of minimizing the sum of the VMs' network diameters of all tenants. Then, we propose a Layered Progressive resource allocation algorithm for multi-tenant cloud data centers based on the Multiple Knapsack Problem(LP-MKP). The LP-MKP algorithm uses a multi-stage layered progressive method for multi-tenant VM allocation and efficiently handles unprocessed tenants at each stage. This reduces resource fragmentation in cloud data centers, decreases the differences in the Qo S among tenants, and improves tenants' overall Qo S in cloud data centers. We perform experiments to evaluate the LP-MKP algorithm and demonstrate that it can provide significant gains over other allocation algorithms. 展开更多
关键词 virtual machine allocation cloud data center multiple tenants multiple knapsack problem
原文传递
A hardware-based algorithm for virtual machine provisioning in a private cloud 被引量:1
4
作者 Amol JAIKAR Gyeong-Ryoon KIM +1 位作者 Dada HUANG Seo-Young NOH 《Journal of Central South University》 SCIE EI CAS 2014年第11期4291-4295,共5页
Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume m... Cloud computing is becoming a key factor in the market day by day. Therefore, many companies are investing or going to invest in this sector for development of large data centers. These data centers not only consume more energy but also produce greenhouse gases. Because of large amount of power consumption, data center providers go for different types of power generator to increase the profit margin which indirectly affects the environment. Several studies are carried out to reduce the power consumption of a data center. One of the techniques to reduce power consumption is virtualization. After several studies, it is stated that hardware plays a very important role. As the load increases, the power consumption of the CPU is also increased. Therefore, by extending the study of virtualization to reduce the power consumption, a hardware-based algorithm for virtual machine provisioning in a private cloud can significantly improve the performance by considering hardware as one of the important factors. 展开更多
关键词 virtualization virtual machine algorithm power consumption data center
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部