Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/...Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.展开更多
Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integra...Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integral of practical undermatched welded joint and whole base and whole weld three-point-bend (TPB) models containing longitudinal crack are com- puted. Dynamic J-integral is evaluated using virtual crack extension (VCE) method and the computation is performed using MARC finite element code. Because of the effect of inertia, dynamic load response curve of computed model waves periodically. Dynamic J-integral evaluated by VCE method is path independent. The effect of inertia has little influence on dynamic J-integral curve. The value of dynamic J-integral of undermatched welded joint is lower than that of whole base metal and higher than that of whole weld metal. The results establish the foundation of safety evaluation for dynamic loaded welded structures.展开更多
Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structur...Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structural integrity and presents tre-mendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model(CZM) . The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology,integrating the developed criterion,the CZM to model the crack,a simple remeshing procedure to accommodate crack propagation,the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials,and a local arc-length solver to the nonlinear equation system,is developed and im-plemented in an in-house program. Three examples,i.e.,a plain concrete beam with a single shear crack,a reinforced concrete(RC) beam with multiple cracks and a compact-tension steel specimen,are simulated. Good agreement between numerical predictions and experimental data is found,which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.展开更多
文摘Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.
基金National Natural Science Foundation of China(No.59501011)Science and Technology New Star Project of Beijing.
文摘Welded joint is a mechanical heterogeneous body, and mechanical heterogeneity has great effect on dynamic fracture behaviour of welded joints. In the present investigation, dynamic response curve and dynamic J-integral of practical undermatched welded joint and whole base and whole weld three-point-bend (TPB) models containing longitudinal crack are com- puted. Dynamic J-integral is evaluated using virtual crack extension (VCE) method and the computation is performed using MARC finite element code. Because of the effect of inertia, dynamic load response curve of computed model waves periodically. Dynamic J-integral evaluated by VCE method is path independent. The effect of inertia has little influence on dynamic J-integral curve. The value of dynamic J-integral of undermatched welded joint is lower than that of whole base metal and higher than that of whole weld metal. The results establish the foundation of safety evaluation for dynamic loaded welded structures.
基金the Scientific Research Foundation for Re-turned Overseas Chinese Scholars, MOE (No. J20050924)the United Research Foundation of the National Natural Science Com-mittee and the Ertan Hydropower Development Co. Ltd., China (No. 50579081)
文摘Fully automatic finite element(FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys,is of great significance in assessing structural integrity and presents tre-mendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model(CZM) . The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology,integrating the developed criterion,the CZM to model the crack,a simple remeshing procedure to accommodate crack propagation,the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials,and a local arc-length solver to the nonlinear equation system,is developed and im-plemented in an in-house program. Three examples,i.e.,a plain concrete beam with a single shear crack,a reinforced concrete(RC) beam with multiple cracks and a compact-tension steel specimen,are simulated. Good agreement between numerical predictions and experimental data is found,which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.