Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, th...Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, the differences in the expression levels of 3 invertase genes, CWI, SAI and NI, between virus- free and ordinary sugarcane seedlings were analyzed. Compared with ordinary sugarcane plants, the expression of CWI was mainly up-regulated in immature leaves and stems at elongation stage and leaves and immature internodes at maturation stage, and especially, greatly up-regulated in immature interuedes at maturation stage of virus-free plants. The expression of SAI and NI were mainly up-regnlated in leaves and immature internedes of virus-free plants at maturation stage, which might be beneficial to sugar accumulation and rapid utilization of monosaccharide in the stalks of virus-free plants. It is further indicated that virus-free treatment could significantly improve the expression of sucrose invertases at late growth period, and might facilitate the increase of plant biomass.展开更多
基金Supported by"863"Program(2013AA102604-1)Natural Science Foundation of Hainan Province(20163124)+1 种基金Basal Research Fund for Central Public-interest Scientific Institute(ITBB140503)Earmarked Fund for China Agriculture Research System(CARS-20-2-5)
文摘Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, the differences in the expression levels of 3 invertase genes, CWI, SAI and NI, between virus- free and ordinary sugarcane seedlings were analyzed. Compared with ordinary sugarcane plants, the expression of CWI was mainly up-regulated in immature leaves and stems at elongation stage and leaves and immature internodes at maturation stage, and especially, greatly up-regulated in immature interuedes at maturation stage of virus-free plants. The expression of SAI and NI were mainly up-regnlated in leaves and immature internedes of virus-free plants at maturation stage, which might be beneficial to sugar accumulation and rapid utilization of monosaccharide in the stalks of virus-free plants. It is further indicated that virus-free treatment could significantly improve the expression of sucrose invertases at late growth period, and might facilitate the increase of plant biomass.