The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic s...The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic self-consistent (VPSC) model are used to investigate the activities of deformation modes of VW84M and VW94M magnesium alloys during the tensile deformation. The results show that the mechanical properties of the above extruded alloys are similar but VW94M has higher strength than VW84M after the same aging process. Compared with the extruded alloys,the as-aged alloys have significantly higher activation of pyramidal slip at the later stage of plastic deformation. In addition,the as-aged VW94M alloy with higher strength has the largest activity of pyramidal slip. In summary,the addition of Gd increases the critical resolved shear stress (CRSS)in each slip system of VW94M,while the increase in the strength and the decrease in the elongation of as-aged alloys are associated with the significant activation of pyramidal slip.展开更多
Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimat...Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.展开更多
High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature forma...High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature formability.The results showed that the strain-hardening coefcient increased,while the Lankford value decreased.In addition,the Erichsen values of all pre-stretch sheets were enhanced compared with that of the as-received sheet.The maximum Erichsen value increased from 2.38 mm for the as-received sample to 4.03 mm for the 10.92%-stretched sample,corresponding to an improvement of 69.32%.This improvement was mainly attributed to the gradual increase in grain size,and the(0001)basal texture was weakened due to the activated non-basal slip as the high-temperature pre-stretching strain levels increased.The visco-plastic self-consistent analysis was performed on the as-received and high-temperature pre-stretched samples.Results confrmed the higher activity of the prismatic slip in 10.92%-stretched sample,leading to divergence and weakening of basal texture components.This results in an augmentation of the Schmid factor under diferent slip systems.Therefore,it can be concluded that high-temperature pre-stretching technology provided an efective method to enhance the formability of Mg alloy sheets.展开更多
文摘The plastic deformation behavior of new Mg-Gd-Y-Zn-Mn magnesium alloys gains great necessity to clarify and understand the mechanism deeply. In the present work,the tensile mechanical property test and visco-plastic self-consistent (VPSC) model are used to investigate the activities of deformation modes of VW84M and VW94M magnesium alloys during the tensile deformation. The results show that the mechanical properties of the above extruded alloys are similar but VW94M has higher strength than VW84M after the same aging process. Compared with the extruded alloys,the as-aged alloys have significantly higher activation of pyramidal slip at the later stage of plastic deformation. In addition,the as-aged VW94M alloy with higher strength has the largest activity of pyramidal slip. In summary,the addition of Gd increases the critical resolved shear stress (CRSS)in each slip system of VW94M,while the increase in the strength and the decrease in the elongation of as-aged alloys are associated with the significant activation of pyramidal slip.
基金Thanks go to C.Tome for sharing the VPSC code.This study was supported by the National Natural Science Foundation of China(51421001)the'111' Project(B16007)by the Ministry of Education.
文摘Increasing the plastic deformation temperature of Mg alloys results in higher strain rate sensitivity,easier activation of secondary slip modes,and impeded twinning.In this study,the strain rate sensitivity is estimated for each deformation mode,and visco-plastic self-consistent modeling is used to reproduce the plastic deformation behavior of an Mg-3Al-lZn O-temper plate from 150 to 450℃.Twinning and basal slip have relatively low strain rate sensitivity,whereas secondary slip modes are highly strain rate sensitive at high temperature.The texture evolution and plastic anisotropy are modeled at different temperatures and strain rates.Results show that when the strain rate sensitivity is taken into account,compared with rate independent critical resolved shear stresses,the material parameters and predictions are different.In particular,this study shows that,for hot deformation,there is a critical strain rate above which secondary slip modes predominate,and beyond which tension twinning is activated.A similar transition is expected for modes that have different strain rate sensitivity.
基金supported by the National Natural Science Foundation of China(Nos.51704209,U1810208)the Central Government Guided Local Science and Technology Development Projects(No.YDZJSX2021A010)+3 种基金China Postdoctoral Science Foundation(No.2022M710541)the Projects of International Cooperation in Shanxi(No.201803D421086)the Shanxi Province Patent Promotion Implementation Fund(No.20200718)the Technological Innovation Programs of Higher Education Institutions in Shanxi(No.201802034).
文摘High-temperature pre-stretching experiments were carried out on the AZ31 Mg alloy at 723 K with strain levels of 2.54%,6.48%,10.92%,and 19.2%to alter the microstructure and texture for improving room-temperature formability.The results showed that the strain-hardening coefcient increased,while the Lankford value decreased.In addition,the Erichsen values of all pre-stretch sheets were enhanced compared with that of the as-received sheet.The maximum Erichsen value increased from 2.38 mm for the as-received sample to 4.03 mm for the 10.92%-stretched sample,corresponding to an improvement of 69.32%.This improvement was mainly attributed to the gradual increase in grain size,and the(0001)basal texture was weakened due to the activated non-basal slip as the high-temperature pre-stretching strain levels increased.The visco-plastic self-consistent analysis was performed on the as-received and high-temperature pre-stretched samples.Results confrmed the higher activity of the prismatic slip in 10.92%-stretched sample,leading to divergence and weakening of basal texture components.This results in an augmentation of the Schmid factor under diferent slip systems.Therefore,it can be concluded that high-temperature pre-stretching technology provided an efective method to enhance the formability of Mg alloy sheets.