The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is estab...The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is establishedfrom the viscoelastic material constitutive,and the relationship between the kinematic response and the materialparameters is obtained.Based on the Kelvin constitutive model,a theoretical model for impact between the pro-tective body and the protected body is established,then the dynamic response is obtained.The feasibility of themodel was verified by drop hammer experiment,and the material parameters(elastic modulus,viscosity coeffi-cient)were obtained by formula.The model is discretized and the relationship between local impact response andmaterial parameters is analyzed.The discussion results on the relationship between the impact response and theprotective material performance indicate that adjusting the elastic modulus,viscosity coefficient,and thicknessof the protective material can effectively improve protective effect.展开更多
To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-pe...To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.展开更多
A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account...A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem.展开更多
Dispersion of the generalized Rayleigh waves propagating in a covered halfspace made of viscoelastic materials is investigated by utilizing the exact equations of the theory of linear viscoelasticity.The dispersion eq...Dispersion of the generalized Rayleigh waves propagating in a covered halfspace made of viscoelastic materials is investigated by utilizing the exact equations of the theory of linear viscoelasticity.The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the dispersion of the waves under consideration.Dispersion curves are presented for certain attenuation cases and the influence of the viscosity of the materials is studied through three rheological parameters of the viscoelastic materials which characterize the characteristic creep time,long-term values and the mechanical behaviour of the viscoelastic material around the initial state of the deformation.Numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov.As the result of this discussion,in particular,how the rheological parameters influence the dispersion of the generalized Rayleigh waves propagating in the covered half-space under consideration is established.展开更多
The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecew...The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.展开更多
Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,a...Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well.展开更多
This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of ratio...This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of rational fraction polynomial equations. A theorem about the roots of these equations is proved in the paper. Based on it, some important conclusions about the modal features of the weakly viscoelastic material structures are given according to their dynamic behaviors.展开更多
Based on viscoelastic theory, two new computational methods of solving linear equations and minimum value of the l-norm were put forward for transforming Kohlransch-William-Watts (KWW) function of viscoelastic mater...Based on viscoelastic theory, two new computational methods of solving linear equations and minimum value of the l-norm were put forward for transforming Kohlransch-William-Watts (KWW) function of viscoelastic materials to the generalized Maxwell model. The computational methods for the Maxwell model fitting were achieved in MATLAB software. It is found that fitting precision of the two methods is very high. The method of solving linear equations needs more fitting points and more numbers of Maxwell units. It makes the program of finite element analysis complex. While the method of solving minimum value of 1-norm can obtain very high precision only using less fitting points. These methods can fit not only experimental curve of KWW function, but also the experimental data directly.展开更多
The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combine...The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combined element stiffness matrix of damper-brace system is deduced.At last,the theoretical deduction is verified by comparing the theoretical results with experimental ones.展开更多
The present study explored the influence of axial gradation of viscoelastic materials on the dynamic response of the sandwich beam for structural applications.The finite element(FE)formulations are used to model and i...The present study explored the influence of axial gradation of viscoelastic materials on the dynamic response of the sandwich beam for structural applications.The finite element(FE)formulations are used to model and investigate dynamic response of the sandwich beam.The classical beam theory is used to develop the FE formulations and Lagrange's approach is considered to obtain the equations of motion(EOM).FE code is developed and validated with the existing literature and also conducted the convergence study for the developed FE method.Further,the influence of different viscoelastic materials and boundary conditions on the dynamic response of the sandwich beam is investigated.Four different axial gradation configurations of viscoelastic materials are considered for the present work to explore the influence on natural frequency,loss factor and frequency response of the sandwich beam.The modeled axial gradation of viscoelastic material has displayed a considerable impact on the peak vibrational amplitude response of the sandwich beam for all the boundary conditions and these configurations improved the damping capabilities at different configurations for the structural applications.展开更多
With the expansion of global trade routes,ship collision has become a major problem.This article proposes an approach by laying viscoelastic material on the inner side of the ship to increase the crashworthiness.By us...With the expansion of global trade routes,ship collision has become a major problem.This article proposes an approach by laying viscoelastic material on the inner side of the ship to increase the crashworthiness.By using the nonlinear finite element model software,this study simulates ship collisions as well as models and analyzes ships along with viscoelastic materials.The results from the simulation suggest that viscoelastic materials can effectively protect ships during collisions.展开更多
An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D)viscoelastic media.The fractional Kelvin-Zener constitutive model is used to describe the time-...An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D)viscoelastic media.The fractional Kelvin-Zener constitutive model is used to describe the time-dependent behavior of viscoelastic materials.Within the framework of symplectic elasticity,the governing equations in the Hamiltonian form for the frequency domain(s-domain)can be directly and rigorously calculated.In the s-domain,the analytical solutions of the displacement and stress fields are constructed by superposing the symplectic eigensolutions without any trial function,and the explicit expressions of the intensity factors and J-integral are derived simultaneously.Comparison studies are provided to validate the accuracy and effectiveness of the present solutions.A detailed analysis is made to reveal the effects of viscoelastic parameters and applied loads on the intensity factors and J-integral.展开更多
From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions...From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.展开更多
Incremental harmonic balance method (IHBM) is applied to geometrically nonlinear vibration analysis of a simply supported pipe conveying fluid. the material of which is viscoelastic of the Kelvin- Voigt type. Some uns...Incremental harmonic balance method (IHBM) is applied to geometrically nonlinear vibration analysis of a simply supported pipe conveying fluid. the material of which is viscoelastic of the Kelvin- Voigt type. Some unstable phenomena - the appearance of the peak or jumps in the pipe's amplitude frequency curves, which are considered to be of importance to this kind of structure, are presented in the numerical results, and the influence of several parameters of the system on the dynamic characteristic of the pipe are also studied. It is believed that this is the first attempt to search for the periodic solution of the pipe and its intrinsic property with such a method.展开更多
This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation...This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.展开更多
A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation ...A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, and stress and strain have the same singularity, namely, (σ-e)∝r^-1/(n-1). The asymptotic solution of separating variables of stress, stain and displacement in the crack-tip field was obtained by asymptotic analysis, and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation, it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. When n →∞, the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.展开更多
The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solutio...The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.展开更多
Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting ...Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting energy from environmental vibration,here we investigate a hybrid VEH.Unlike previous studies,this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band(colored)noise.Firstly,a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established,and analytical solutions to the dimensionless equations are derived.Then,the formula of the amplitude-frequency responses in the deterministic case and the first-order and secondorder steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method.The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method.Furthermore,the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter.Eventually,the influence of system parameters on mean-square electric voltage,mean-square electric current and mean output power is discussed.Results show that the electromechanical coupling coefficients,random excitation and viscoelastic parameter have a positive effect on the output power of the system.展开更多
In this study,a novel rotational damper called a Rotational Friction Viscoelastic Damper(RFVD) is introduced.Some viscoelastic pads are added to the Rotational Friction Damper(RFD) in addition to the friction discs us...In this study,a novel rotational damper called a Rotational Friction Viscoelastic Damper(RFVD) is introduced.Some viscoelastic pads are added to the Rotational Friction Damper(RFD) in addition to the friction discs used in this conventional device.Consequently,the amount of energy dissipated by the damper increases in low excitation frequencies.In fact,the input energy to the structure is simultaneously dissipated in the form of friction and heat by frictional discs and viscoelastic pads.In order to compare the performance of this novel damper with the earlier types,a set of experiments were carried out.According to the test results,the RFVD showed a better performance in dissipating input energy to the structure when compared to the RFD.The seismic behavior of steel frames equipped with these dampers was also numerically evaluated based on a nonlinear time history analysis.The numerical results verifi ed the performance of the dampers in increasing the energy dissipation and decreasing the energy input to the structural elements.In order to achieve the maximum dissipated energy,the dampers need to be installed in certain places called critical points in the structure.An appropriate approach is presented to properly fi nd these points.Finally,the performance of the RFVDs installed at these critical points was investigated in comparison to some other confi gurations and the validity of the suggested method in increasing the energy dissipation was confi rmed.展开更多
Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayle...Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders' thin shell theory. Nu- merical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12172151 and 12172149).
文摘The relationship between the protective performance of flexible polymer material and material parameters(elasticmodulus,viscosity coefficient)is explored,an impact collision motion equation between two bodies is establishedfrom the viscoelastic material constitutive,and the relationship between the kinematic response and the materialparameters is obtained.Based on the Kelvin constitutive model,a theoretical model for impact between the pro-tective body and the protected body is established,then the dynamic response is obtained.The feasibility of themodel was verified by drop hammer experiment,and the material parameters(elastic modulus,viscosity coeffi-cient)were obtained by formula.The model is discretized and the relationship between local impact response andmaterial parameters is analyzed.The discussion results on the relationship between the impact response and theprotective material performance indicate that adjusting the elastic modulus,viscosity coefficient,and thicknessof the protective material can effectively improve protective effect.
基金National Natural Science Foundation of China(No.51476150)Funds for International Joint Research Program of Shanxi Province(No.2014081028)Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province
文摘To improve the performance of traditional mechanical shock absorber, a new type of high molecular polymer is formulated and applied to overloaded vehicle shock absorber. According to the operating principle of high-performance viscoelastic material shock absorber, the geometrical structure of shock absorber is designed and machined. Then its theoretical model is derived by using analytical method, and the impact test is carried out on high-performance viscoelastic material shock absorber. The results show that experimental and theoretical damping force curves have good agreement, which validates the credibility of theoretical model. The investigation provides a potential way to enhance damping performance and increase vehicle load.
文摘A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem.
文摘Dispersion of the generalized Rayleigh waves propagating in a covered halfspace made of viscoelastic materials is investigated by utilizing the exact equations of the theory of linear viscoelasticity.The dispersion equation is obtained for an arbitrary type of hereditary operator of the materials of the constituents and a solution algorithm is developed for obtaining numerical results on the dispersion of the waves under consideration.Dispersion curves are presented for certain attenuation cases and the influence of the viscosity of the materials is studied through three rheological parameters of the viscoelastic materials which characterize the characteristic creep time,long-term values and the mechanical behaviour of the viscoelastic material around the initial state of the deformation.Numerical results are presented and discussed for the case where the viscoelasticity of the materials is described through fractional-exponential operators by Rabotnov.As the result of this discussion,in particular,how the rheological parameters influence the dispersion of the generalized Rayleigh waves propagating in the covered half-space under consideration is established.
文摘The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.
文摘Due to a viscoelastic damping middle layer,sandwich structures have the capacity of energy consumption.In this paper,we describe the frequency-dependent property of viscoelastic materials using complex modulus model,and iterative modal strain energy method and iterative complex eigenvalue method are presented to obtain frequency and loss factor of sandwich structures.The two methods are effective and exact for the large-scale complex composite sandwich structures.Then an optimum analysis method is suggested to apply to sandwich structures.Finally,as an example,an optimum analysis of a clamped-clamped sandwich beams is conducted,theoretical closed-form solution and numerical predictions are studied comparatively,and the results agree well.
文摘This paper discusses the modal features of weakly-viscoelastic material structures both for single-modulus and multi-modulus materials. It is the eigenvalues of these structures that are the roots of a series of rational fraction polynomial equations. A theorem about the roots of these equations is proved in the paper. Based on it, some important conclusions about the modal features of the weakly viscoelastic material structures are given according to their dynamic behaviors.
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University, ChinaProject (20050533037) supported by the Doctoral Program of Higher Education, China
文摘Based on viscoelastic theory, two new computational methods of solving linear equations and minimum value of the l-norm were put forward for transforming Kohlransch-William-Watts (KWW) function of viscoelastic materials to the generalized Maxwell model. The computational methods for the Maxwell model fitting were achieved in MATLAB software. It is found that fitting precision of the two methods is very high. The method of solving linear equations needs more fitting points and more numbers of Maxwell units. It makes the program of finite element analysis complex. While the method of solving minimum value of 1-norm can obtain very high precision only using less fitting points. These methods can fit not only experimental curve of KWW function, but also the experimental data directly.
文摘The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combined element stiffness matrix of damper-brace system is deduced.At last,the theoretical deduction is verified by comparing the theoretical results with experimental ones.
基金support from the Department of Science and Technology (DST)file no.ECR/2016/001448 titled“Experimental Investigation of Passive,Semi-active and Active vibration control of Composite Sandwich Structure”funded by Science and Engineering Research Board,Government of India。
文摘The present study explored the influence of axial gradation of viscoelastic materials on the dynamic response of the sandwich beam for structural applications.The finite element(FE)formulations are used to model and investigate dynamic response of the sandwich beam.The classical beam theory is used to develop the FE formulations and Lagrange's approach is considered to obtain the equations of motion(EOM).FE code is developed and validated with the existing literature and also conducted the convergence study for the developed FE method.Further,the influence of different viscoelastic materials and boundary conditions on the dynamic response of the sandwich beam is investigated.Four different axial gradation configurations of viscoelastic materials are considered for the present work to explore the influence on natural frequency,loss factor and frequency response of the sandwich beam.The modeled axial gradation of viscoelastic material has displayed a considerable impact on the peak vibrational amplitude response of the sandwich beam for all the boundary conditions and these configurations improved the damping capabilities at different configurations for the structural applications.
文摘With the expansion of global trade routes,ship collision has become a major problem.This article proposes an approach by laying viscoelastic material on the inner side of the ship to increase the crashworthiness.By using the nonlinear finite element model software,this study simulates ship collisions as well as models and analyzes ships along with viscoelastic materials.The results from the simulation suggest that viscoelastic materials can effectively protect ships during collisions.
基金Project supported by the National Natural Science Foundation of China(Nos.11872303 and 11702221)the China Postdoctoral Science Foundation(No.2017M613198)the Fundamental Research Funds for the Central Universities of China(No.G2020KY05402)
文摘An accurate and straightforward symplectic method is presented for the fracture analysis of fractional two-dimensional(2D)viscoelastic media.The fractional Kelvin-Zener constitutive model is used to describe the time-dependent behavior of viscoelastic materials.Within the framework of symplectic elasticity,the governing equations in the Hamiltonian form for the frequency domain(s-domain)can be directly and rigorously calculated.In the s-domain,the analytical solutions of the displacement and stress fields are constructed by superposing the symplectic eigensolutions without any trial function,and the explicit expressions of the intensity factors and J-integral are derived simultaneously.Comparison studies are provided to validate the accuracy and effectiveness of the present solutions.A detailed analysis is made to reveal the effects of viscoelastic parameters and applied loads on the intensity factors and J-integral.
基金Project supported by the National Natural Sciences Foundation of China (No. 10272069) the Shanghai Key Subject Program.
文摘From the constitutive model with generalized force fields for a viscoelastic body with damage, the differential equations of motion for thin and thick plates with damage are derived under arbitrary boundary conditions. The convolution-type functionals for the bending of viscoelastic thin and thick plates with damage are presented, and the corresponding generalized variational principles are given. From these generalized principles, all the basic equations of the displacement and damage variables and initial and boundary conditions can be deduced. As an example, we compare the difference between the dynamical properties of plates with and without damage and consider the effect of damage on the dynamical properties of plates.
基金This project was financially supported by the National Key Project of China(No.PD9521907)by the National Natural Science Foundation of China(No.19872025)
文摘Incremental harmonic balance method (IHBM) is applied to geometrically nonlinear vibration analysis of a simply supported pipe conveying fluid. the material of which is viscoelastic of the Kelvin- Voigt type. Some unstable phenomena - the appearance of the peak or jumps in the pipe's amplitude frequency curves, which are considered to be of importance to this kind of structure, are presented in the numerical results, and the influence of several parameters of the system on the dynamic characteristic of the pipe are also studied. It is believed that this is the first attempt to search for the periodic solution of the pipe and its intrinsic property with such a method.
文摘This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.
基金Supported by the Nature foundation of Heilongjiang Province under Grant No. A009 the foundation of Harbin Engineering University under Grant No. HEUF04005.
文摘A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, and stress and strain have the same singularity, namely, (σ-e)∝r^-1/(n-1). The asymptotic solution of separating variables of stress, stain and displacement in the crack-tip field was obtained by asymptotic analysis, and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation, it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. When n →∞, the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.
文摘The equation of motion of a viscoelastic rod of density rod p is considered when the Constitutive Relationships contains fractional derivatives (in the Riemann-Liouville sense) of order β, 0 ≤ β ≤ 1. The solution of this equation is given in a general case. It is shown that for the limit values of the derivative index ,β, i.e. when β = 0 or β = 1, the general solution gives rise to classical solutions of hyperbolic and parabolic equations.
基金the National Natural Science Foundation of China(Grant Nos.12002089 and 11902081)the Science and Technology Projects in Guangzhou(Grant Nos.202201010326 and 2023A04J1323)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010833)。
文摘Because of the increasing demand for electrical energy,vibration energy harvesters(VEHs)that convert vibratory energy into electrical energy are a promising technology.In order to improve the efficiency of harvesting energy from environmental vibration,here we investigate a hybrid VEH.Unlike previous studies,this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band(colored)noise.Firstly,a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established,and analytical solutions to the dimensionless equations are derived.Then,the formula of the amplitude-frequency responses in the deterministic case and the first-order and secondorder steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method.The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method.Furthermore,the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter.Eventually,the influence of system parameters on mean-square electric voltage,mean-square electric current and mean output power is discussed.Results show that the electromechanical coupling coefficients,random excitation and viscoelastic parameter have a positive effect on the output power of the system.
文摘In this study,a novel rotational damper called a Rotational Friction Viscoelastic Damper(RFVD) is introduced.Some viscoelastic pads are added to the Rotational Friction Damper(RFD) in addition to the friction discs used in this conventional device.Consequently,the amount of energy dissipated by the damper increases in low excitation frequencies.In fact,the input energy to the structure is simultaneously dissipated in the form of friction and heat by frictional discs and viscoelastic pads.In order to compare the performance of this novel damper with the earlier types,a set of experiments were carried out.According to the test results,the RFVD showed a better performance in dissipating input energy to the structure when compared to the RFD.The seismic behavior of steel frames equipped with these dampers was also numerically evaluated based on a nonlinear time history analysis.The numerical results verifi ed the performance of the dampers in increasing the energy dissipation and decreasing the energy input to the structural elements.In order to achieve the maximum dissipated energy,the dampers need to be installed in certain places called critical points in the structure.An appropriate approach is presented to properly fi nd these points.Finally,the performance of the RFVDs installed at these critical points was investigated in comparison to some other confi gurations and the validity of the suggested method in increasing the energy dissipation was confi rmed.
文摘Free vibration characteristics of circular cylindrical shell with passive constrained layer damping (PCLD)are presented. Wave propagation approach rather than finite element method, transfer matrix method, and Rayleigh-Ritz method is used to solve the problem of vibration of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. The governing equations of motion for the orthotropic cylindrical shell with PCLD are derived on the base of Sanders' thin shell theory. Nu- merical results show that the present method is more effective in comparison with other methods. The effects of the thickness of viscoelastic core and constrained layer, the elastic modulus ratio of orthotropic constrained layer, the complex shear modulus of viscoelastic core on frequency parameter, and the loss factor are discussed.