期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Acoustic viscoelastic modeling by frequency-domain boundary element method 被引量:1
1
作者 Xizhu Guan Li-Yun Fu Weijia Sun 《Earthquake Science》 CSCD 2017年第2期97-105,共9页
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method... Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method. 展开更多
关键词 viscoelastic media viscoelastic boundary element method Frequency-domain implementation viscoelastic numerical modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部