期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of fluid elasticity on the numerical stability of high-resolution schemes for high shearing contraction flows using OpenFOAM
1
作者 T. Chourushi 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第1期41-51,共11页
Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though loo... Viscoelastic fluids due to their non-linear nature play an important role in process and polymer industries. These non-linear characteristics of fluid, influence final outcome of the product. Such processes though look simple are numerically challenging to study, due to the loss of numerical stability. Over the years, various methodologies have been developed to overcome this numerical limitation. In spite of this, numerical solutions are considered distant from accuracy, as first-order upwind-differencing scheme (UDS) is often employed for improving the stability of algorithm. To elude this effect, some works been reported in the past, where high-resolution-schemes (HRS) were employed and Deborah number was varied. However, these works are limited to creeping flows and do not detail any information on the numerical stability of HRS. Hence, this article presents the numerical study of high shearing contraction flows, where stability of HRS are addressed in reference to fluid elasticity. Results suggest that all I-IRS show some order of undue oscillations in flow variable profiles, measured along vertical lines placed near contraction region in the upstream section of domain, at varied elasticity number E ~ 5. Furthermore, by E, a clear relationship between numerical stability of HRS and E was obtained, which states that the order of undue oscillations in flow variable profiles is directly proportional to E. 展开更多
关键词 High resolution schemes (HRS)viscoelastic fluid Contraction flows Elasticity number OpenFOAM
下载PDF
Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
2
作者 张红娜 李凤臣 +3 位作者 李小斌 李东阳 蔡伟华 宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期388-400,共13页
Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on ... Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on the numerical databases,the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns,the wall effect on the turbulent kinetic energy spectrum,and the local relationship between the flow motion and the microstructures' behavior.Moreover,to address the underlying physical mechanism of elastic turbulence,its generation was presented in terms of the global energy budget.The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length,and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched.In addition,the patterns of microstructures' elongation behave like a filament.From the results of the turbulent kinetic energy budget,it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status. 展开更多
关键词 elastic turbulence viscoelastic fluid direct numerical simulation rectilinear shear flow
下载PDF
MECHANISM FOR VISCOELASTIC POLYMER SOLUTION PERCOLATING THROUGH POROUS MEDIA 被引量:8
3
作者 ZHANG Li-juan YUE Xiang-an 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第2期241-248,共8页
The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure dro... The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Hating Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media. 展开更多
关键词 polymer flooding viscoelastic fluid flow resistance PERCOLATION pore throat
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部