The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately tre...The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately treated as equivalent terms associated with effects. Then, the free vibro-impact(VI) system is absorbed to describe the periodic motion without impacts and quasi-periodic motion with impacts based upon the level of system energy. The stochastic averaging of energy envelope(SAEE) is adopted to seek the stationary probability density functions(PDFs). The detailed theoretical results for Van der Pol viscoelastic VI system with the right unilateral nonzero offset barrier are solved to demonstrate the important effects of the viscoelastic damping and nonzero rigid barrier impacts condition. Monte Carlo(MC) simulation is also performed to verify the reliability of the suggested approach. The stochastic P-bifurcation caused by certain system parameters is further explored. The variation of elastic modulus from negative to zero and then to positive witnesses the evolution process of stochastic P-bifurcation. From the vicinity of the common value to a wider range, the relaxation time induces the stochastic P-bifurcation in the two interval schemes.展开更多
A method of analyzing random response of linear viscoelastic systems under random excitation has been presented. The covariance matrices of random responses of a single-degree-freedom linear viscoelastic system subjec...A method of analyzing random response of linear viscoelastic systems under random excitation has been presented. The covariance matrices of random responses of a single-degree-freedom linear viscoelastic system subjected to stationary white noise and filtered white noise excitations have been obtained in closed form. For illustration, a numerical example has been included. It is observed that viscoelasticity has damping effect on the mean square random responses of the system, the higher is viscoelastic behavior, the higher the damping effect.展开更多
Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceilin...Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).展开更多
Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of...Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Fini...The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.展开更多
AIM:To investigate the influence of ophthalmic viscoelastic devices(OVDs)and different surgical approaches on the intraocular pressure(IOP)before and after creation of the curvilinear circular capsulorhexis(CCC)as a m...AIM:To investigate the influence of ophthalmic viscoelastic devices(OVDs)and different surgical approaches on the intraocular pressure(IOP)before and after creation of the curvilinear circular capsulorhexis(CCC)as a measure for anterior chamber stability during this maneuver.METHODS:Prospective experimental WetLab study carried out on enucleated porcine eyes.IOP was measured before and after CCC with the iCare Rebound tonometer(iCare ic200;iCare Finland Oy,Vantaa,Finland).The OVDs used were a cohesive one[Z-Hyalin,Carl Zeiss Meditec AG,Germany;hyaluronic acid(HA)]and a dispersive[Z-Celcoat,Carl Zeiss Meditec AG,Germany;hydroxy propylmethylcellulosis(HPMC)].The CCC was created using Utrata forceps or 23 g microforceps in different combinations with the OVDs.RESULTS:Using the Utrata forceps the IOP dropped from 63.65±6.44 to 11.25±3.63 mm Hg during the CCC.The use of different OVDs made no difference.Using the 23 g microforceps the IOP dropped from 65.35±8.15 to 36.55±6.09 mm Hg.The difference between IOP drop using either Utrata forceps or 23 g microforceps was highly significant regardless of the OVD used.CONCLUSION:Using the sideport for the creation of the capsulorhexis leads to a lesser drop in IOP during this maneuver compared to the main incision in enucleated porcine eyes.The use of different OVD has no significant influence on IOP drop.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorpo...This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.展开更多
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment sta...This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment stability property of the viscoelastic system,we use the stochastic averaging method,Girsanov theorem and Feynmann-Kac formula to derive the approximate analytic expansion of the moment Lyapunov exponent.Furthermore,the Monte Carlo simulation results for the original system are given to check the accuracy of the approximate analytic results.At the end of this paper,results are presented to show some quantitative pictures of the effects of the system parameters,noise parameters and viscoelastic parameters on the stability of the viscoelastic plate.展开更多
In this paper, we establish the existence of traveling wave solutions to the nonlinear three-dimensional viscoelastic system exhibiting long range memory. Under certain hypotheses, if the speed of propagation is betwe...In this paper, we establish the existence of traveling wave solutions to the nonlinear three-dimensional viscoelastic system exhibiting long range memory. Under certain hypotheses, if the speed of propagation is between the speeds determined by the equilibrium and instantaneous elastic tensors, then the system has nontrivial trav- eling wave solutions. Moreover, the system has only trivial traveling wave solution in some cases.展开更多
A theoretical model was suggested which describes the generation of the misfit dislocation dipole in the system of the viscoelastic matrix containing a circular stiff nanoscale inhomogeneity.The critical condition of ...A theoretical model was suggested which describes the generation of the misfit dislocation dipole in the system of the viscoelastic matrix containing a circular stiff nanoscale inhomogeneity.The critical condition of misfit dislocation dipole and the solution of equilibrium position were given.The influence of the ratio of shear modulus,the misfit strain and viscosity on the equilibrium of the dislocation and critical parameter of inhomogeneity was investigated.The result shows that the equilibrium position de increases with the increase of the ratio of original shear modulus and the effect decreases with the increase of viscosity of matrix.Along with the increase of viscosity of matrix,de first increases and then decreases and possesses maximum value when t=0.3τ and tends to a stable value when t≥1.0τ.Along with the increase of viscosity of matrix,Rc first decreases and then increases and possesses minimum value when t=0.3τ and tends to a stable value when t≥1.0τ.展开更多
The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and consti...The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and constitutive equation for the novel viscoelastic micelle systems were investigated.The results show that the micelle systems possess viscoelasticity,thixotropy,and shear thinning property.Some micelle systems possess hysteresis loops showing both viscoelasticity and thixotropy.It is proved that the flow curves are characterized by the co-rotational Jeffreys constitutive equation correctly.展开更多
In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which ext...In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.展开更多
BACKGROUND Conventional coagulation tests are widely used in chronic liver disease to assess haemostasis and to guide blood product transfusion.This is despite the fact that conventional tests do not reliably separate...BACKGROUND Conventional coagulation tests are widely used in chronic liver disease to assess haemostasis and to guide blood product transfusion.This is despite the fact that conventional tests do not reliably separate those with a clinically significant coagulopathy from those who do not.Viscoelastic testing such as thromboelastography(TEG)correlate with bleeding risk and are more accurate in identifying those who will benefit from blood product transfusion.Despite this,viscoelastic tests have not been widely used in patients with chronic liver disease outside the transplant setting.AIM To assess the utility of Viscoelastic Testing guided transfusion in chronic liver disease patients presenting with bleeding or who require an invasive procedure.METHODS PubMed and Google Scholar searches were performed using the key words“thromboelastography”,“TEG”or“viscoelastic”and“liver transplantation”,“cirrhosis”or“liver disease”and“transfusion”,“haemostasis”,“blood management”or“haemorrhage”.A full text review was undertaken and data was extracted from randomised control trials that evaluated the outcomes of viscoelastic test guided transfusion in those with liver disease.The study subjects,inclusion and exclusion criteria,methods,outcomes and length of follow up were examined.Data was extracted by two independent individuals using a standardized collection form.The risk of bias was assessed in the included studies.RESULTS A total of five randomised control trials included in the analysis examined the use of TEG guided blood product transfusion in cirrhosis prior to invasive procedures(n=118),non-variceal haemorrhage(n=96),variceal haemorrhage(n=60)and liver transplantation(n=28).TEG guided transfusion was effective in all five studies with a statistically significant reduction in overall blood product transfusion compared to standard of care.Four of the five studies reported a significant reduction in transfusion of fresh frozen plasma and platelets.Two studies showed a significant reduction in cryoprecipitate transfusion.No increased risk of bleeding was reported in the three trials where TEG was used perioperatively or prior to an invasive procedure.Two trials in the setting of cirrhotic variceal and non-variceal bleeding showed no difference in control of initial bleeding.In those with variceal bleeding,there was a statistically significant reduction in rate of re-bleeding at 42 d in the TEG arm 10%(vs 26.7%in the standard of care arm P=0.012).Mortality data reported at various time points for all five trials from 6 wk up to 3 years was not statistically different between each arm.One trial in the setting of non-variceal bleeding demonstrated a significant reduction in adverse transfusion events in the TEG arm 30.6%(vs 74.5%in the control arm P<0.01).In this study there was no significant difference in total hospital stay although length of stay in intensive care unit was reduced by an average of 2 d in the TEG arm(P=0.012).CONCLUSION Viscoelastic testing has been shown to reduce blood product usage in chronic liver disease without compromising safety and may enable guidelines to be developed to ensure patients with liver disease are optimally managed.展开更多
We investigated the natural oscillations of dissipative inhomogeneous plate mechanical systems with point connections. Based on the principle of virtual displacements, we equate to zero the sum of all active work forc...We investigated the natural oscillations of dissipative inhomogeneous plate mechanical systems with point connections. Based on the principle of virtual displacements, we equate to zero the sum of all active work force, including the force of inertia which obtain equations vibrations of mechanical systems. Frequency equation is solved numerically by the method of Muller. According to the result of numerical analysis we established nonmonotonic dependence damping coefficients of the system parameters.展开更多
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural...Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.展开更多
We consider a quasilinear heat system in the presence of an integral term and establish a general and optimal decay result from which improves and generalizes several stability results in the literature.
The thermal convection of a Jeffreys fluid subjected to a plane Poiseuille flow in a fluid-porous system composed of a fluid layer and a porous layer is studied in the paper.A linear stability analysis and a Chebyshev...The thermal convection of a Jeffreys fluid subjected to a plane Poiseuille flow in a fluid-porous system composed of a fluid layer and a porous layer is studied in the paper.A linear stability analysis and a Chebyshevτ-QZ algorithm are employed to solve the thermal mixed convection.Unlike the case in a single layer,the neutral curves of the two-layer system may be bi-modal in the proper depth ratio of the two layers.We find that the longitudinal rolls(LRs)only depend on the depth ratio.With the existence of the shear flow,the effects of the depth ratio,the Reynolds number,the Prandtl number,the stress relaxation,and strain retardation times on the transverse rolls(TRs)are also studied.Additionally,the thermal instability of the viscoelastic fluid is found to be more unstable than that of the Newtonian fluid in a two-layer system.In contrast to the case for Newtonian fluids,the TRs rather than the LRs may be the preferred mode for the viscoelastic fluids in some cases.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11872305 and 11872307)the Excellent Doctorate Cultivating Foundation of Northwestern Polytechnical University,China
文摘The stationary response of viscoelastic dynamical system with the right unilateral nonzero offset barrier impacts subjected to stochastic excitations is investigated. First, the viscoelastic force is approximately treated as equivalent terms associated with effects. Then, the free vibro-impact(VI) system is absorbed to describe the periodic motion without impacts and quasi-periodic motion with impacts based upon the level of system energy. The stochastic averaging of energy envelope(SAEE) is adopted to seek the stationary probability density functions(PDFs). The detailed theoretical results for Van der Pol viscoelastic VI system with the right unilateral nonzero offset barrier are solved to demonstrate the important effects of the viscoelastic damping and nonzero rigid barrier impacts condition. Monte Carlo(MC) simulation is also performed to verify the reliability of the suggested approach. The stochastic P-bifurcation caused by certain system parameters is further explored. The variation of elastic modulus from negative to zero and then to positive witnesses the evolution process of stochastic P-bifurcation. From the vicinity of the common value to a wider range, the relaxation time induces the stochastic P-bifurcation in the two interval schemes.
文摘A method of analyzing random response of linear viscoelastic systems under random excitation has been presented. The covariance matrices of random responses of a single-degree-freedom linear viscoelastic system subjected to stationary white noise and filtered white noise excitations have been obtained in closed form. For illustration, a numerical example has been included. It is observed that viscoelasticity has damping effect on the mean square random responses of the system, the higher is viscoelastic behavior, the higher the damping effect.
基金the financial support from the National Natural Science Foundation of China(Nos:21773161,22172108)。
文摘Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).
基金supported by the National Natural Science Foundation of China(Nos.12272210,11872037,11872159)the Innovation Program of Shanghai Municipal Education Commission of China(No.2017-01-07-00-09-E00019)。
文摘Locally resonant metamaterials have low-frequency band gaps and the capability of converging vibratory energy in the band gaps at resonant cells.It has been demonstrated by several researchers that the dissipatioin of vibratory energy within the band gap can be improved by using viscoelastic materials.This paper designs an integrated viscoelastic metamaterial for energy harvesting and vibration isolation.The viscoelastic metamaterial is achieved by a viscoelastic beam periodically arrayed with spatial ball-pendulum nonlinear energy harvesters.The nonlinear resonator with an energy harvesting function is achieved by placing a free-rolling magnetic ball in a spherical cavity with an additional induction coil.The dynamic equations of viscoelastic metamaterials under transverse excitation are established,and the energy harvesting and vibration isolation characteristics within the dispersion relation of viscoelastic metamaterials are analyzed.The results show that the vibrations of the main body of the viscoelastic metamaterial beam are significantly suppressed in the frequency range of the local resonance band gap.At the same time,the elastic waves are limited in the nonlinear resonator with an energy harvesting function,which improves the energy output.Finally,an experimental platform of viscoelastic metamaterial vibration is established for validation purposes.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
基金NSFC Grants(12072063,11972109)Grant of State Key Laboratory of Structural Analysis for Industrial Equipment(S22403)+1 种基金National Key Research and Development Program of China(2020YFB1708304)Alexander von Humboldt Foundation(1217594).
文摘The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic materials by reducing the degree of freedoms(DOFs).A basic framework of the Multiscale Scaled Boundary Finite Element Method(MsSBFEM)was presented in our previous works,but those works only addressed two-dimensional problems.In order to solve more realistic problems,a three-dimensional MsSBFEM is further developed in this article.In the proposed method,the octree SBFEM is used to deal with the three-dimensional calculation for numerical base functions to bridge small and large scales,the three-dimensional image-based analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the computational accuracy.Besides,the Temporally Piecewise Adaptive Algorithm(TPAA)is used to maintain the computational accuracy of multiscale analysis by adaptive calculation in time domain.The results of numerical examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic analysis with good accuracy.For instance,the DOFs can be reduced by 9021 times compared with Direct Numerical Simulation(DNS)with an average error of 1.87%in the third example,and it is very effective in dealing with three-dimensional complex microstructures directly based on images without any geometric modelling process.
文摘AIM:To investigate the influence of ophthalmic viscoelastic devices(OVDs)and different surgical approaches on the intraocular pressure(IOP)before and after creation of the curvilinear circular capsulorhexis(CCC)as a measure for anterior chamber stability during this maneuver.METHODS:Prospective experimental WetLab study carried out on enucleated porcine eyes.IOP was measured before and after CCC with the iCare Rebound tonometer(iCare ic200;iCare Finland Oy,Vantaa,Finland).The OVDs used were a cohesive one[Z-Hyalin,Carl Zeiss Meditec AG,Germany;hyaluronic acid(HA)]and a dispersive[Z-Celcoat,Carl Zeiss Meditec AG,Germany;hydroxy propylmethylcellulosis(HPMC)].The CCC was created using Utrata forceps or 23 g microforceps in different combinations with the OVDs.RESULTS:Using the Utrata forceps the IOP dropped from 63.65±6.44 to 11.25±3.63 mm Hg during the CCC.The use of different OVDs made no difference.Using the 23 g microforceps the IOP dropped from 65.35±8.15 to 36.55±6.09 mm Hg.The difference between IOP drop using either Utrata forceps or 23 g microforceps was highly significant regardless of the OVD used.CONCLUSION:Using the sideport for the creation of the capsulorhexis leads to a lesser drop in IOP during this maneuver compared to the main incision in enucleated porcine eyes.The use of different OVD has no significant influence on IOP drop.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
文摘This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature.
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11072107 and 91016022)the Specialized Research Fund for the Doctoral Program of Higher Education of China (GrantNo.20093218110003)
文摘This article examines a viscoelastic plate that is driven parametrically by a non-Guassian colored noise,which is simplified to an Ornstein-Uhlenbeck process based on the approximation method.To examine the moment stability property of the viscoelastic system,we use the stochastic averaging method,Girsanov theorem and Feynmann-Kac formula to derive the approximate analytic expansion of the moment Lyapunov exponent.Furthermore,the Monte Carlo simulation results for the original system are given to check the accuracy of the approximate analytic results.At the end of this paper,results are presented to show some quantitative pictures of the effects of the system parameters,noise parameters and viscoelastic parameters on the stability of the viscoelastic plate.
文摘In this paper, we establish the existence of traveling wave solutions to the nonlinear three-dimensional viscoelastic system exhibiting long range memory. Under certain hypotheses, if the speed of propagation is between the speeds determined by the equilibrium and instantaneous elastic tensors, then the system has nontrivial trav- eling wave solutions. Moreover, the system has only trivial traveling wave solution in some cases.
基金Project(10472030) supported by the National Natural Science Foundation of China
文摘A theoretical model was suggested which describes the generation of the misfit dislocation dipole in the system of the viscoelastic matrix containing a circular stiff nanoscale inhomogeneity.The critical condition of misfit dislocation dipole and the solution of equilibrium position were given.The influence of the ratio of shear modulus,the misfit strain and viscosity on the equilibrium of the dislocation and critical parameter of inhomogeneity was investigated.The result shows that the equilibrium position de increases with the increase of the ratio of original shear modulus and the effect decreases with the increase of viscosity of matrix.Along with the increase of viscosity of matrix,de first increases and then decreases and possesses maximum value when t=0.3τ and tends to a stable value when t≥1.0τ.Along with the increase of viscosity of matrix,Rc first decreases and then increases and possesses minimum value when t=0.3τ and tends to a stable value when t≥1.0τ.
基金Project(20276016) supported by the National Natural Science Foundation of China
文摘The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and constitutive equation for the novel viscoelastic micelle systems were investigated.The results show that the micelle systems possess viscoelasticity,thixotropy,and shear thinning property.Some micelle systems possess hysteresis loops showing both viscoelasticity and thixotropy.It is proved that the flow curves are characterized by the co-rotational Jeffreys constitutive equation correctly.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2011-0007870)
文摘In this paper, we consider a system of coupled quasilinear viscoelastic equa- tions with nonlinear damping. We use the perturbed energy method to show the general decay rate estimates of energy of solutions, which extends some existing results concerning a general decay for a single equation to the case of system, and a nonlinear system of viscoelastic wave equations to a quasilinear system.
文摘BACKGROUND Conventional coagulation tests are widely used in chronic liver disease to assess haemostasis and to guide blood product transfusion.This is despite the fact that conventional tests do not reliably separate those with a clinically significant coagulopathy from those who do not.Viscoelastic testing such as thromboelastography(TEG)correlate with bleeding risk and are more accurate in identifying those who will benefit from blood product transfusion.Despite this,viscoelastic tests have not been widely used in patients with chronic liver disease outside the transplant setting.AIM To assess the utility of Viscoelastic Testing guided transfusion in chronic liver disease patients presenting with bleeding or who require an invasive procedure.METHODS PubMed and Google Scholar searches were performed using the key words“thromboelastography”,“TEG”or“viscoelastic”and“liver transplantation”,“cirrhosis”or“liver disease”and“transfusion”,“haemostasis”,“blood management”or“haemorrhage”.A full text review was undertaken and data was extracted from randomised control trials that evaluated the outcomes of viscoelastic test guided transfusion in those with liver disease.The study subjects,inclusion and exclusion criteria,methods,outcomes and length of follow up were examined.Data was extracted by two independent individuals using a standardized collection form.The risk of bias was assessed in the included studies.RESULTS A total of five randomised control trials included in the analysis examined the use of TEG guided blood product transfusion in cirrhosis prior to invasive procedures(n=118),non-variceal haemorrhage(n=96),variceal haemorrhage(n=60)and liver transplantation(n=28).TEG guided transfusion was effective in all five studies with a statistically significant reduction in overall blood product transfusion compared to standard of care.Four of the five studies reported a significant reduction in transfusion of fresh frozen plasma and platelets.Two studies showed a significant reduction in cryoprecipitate transfusion.No increased risk of bleeding was reported in the three trials where TEG was used perioperatively or prior to an invasive procedure.Two trials in the setting of cirrhotic variceal and non-variceal bleeding showed no difference in control of initial bleeding.In those with variceal bleeding,there was a statistically significant reduction in rate of re-bleeding at 42 d in the TEG arm 10%(vs 26.7%in the standard of care arm P=0.012).Mortality data reported at various time points for all five trials from 6 wk up to 3 years was not statistically different between each arm.One trial in the setting of non-variceal bleeding demonstrated a significant reduction in adverse transfusion events in the TEG arm 30.6%(vs 74.5%in the control arm P<0.01).In this study there was no significant difference in total hospital stay although length of stay in intensive care unit was reduced by an average of 2 d in the TEG arm(P=0.012).CONCLUSION Viscoelastic testing has been shown to reduce blood product usage in chronic liver disease without compromising safety and may enable guidelines to be developed to ensure patients with liver disease are optimally managed.
文摘We investigated the natural oscillations of dissipative inhomogeneous plate mechanical systems with point connections. Based on the principle of virtual displacements, we equate to zero the sum of all active work force, including the force of inertia which obtain equations vibrations of mechanical systems. Frequency equation is solved numerically by the method of Muller. According to the result of numerical analysis we established nonmonotonic dependence damping coefficients of the system parameters.
基金National Natural Science Foundation of China(51208296&51478343)Shanghai Committee of Science and Technology(13231200503)+2 种基金Fundamental Research Funds for the Central Universities(2013KJ095&101201438)Shanghai Educational Development Foundation(13CG17)National Key Technology R&D Program(2012BAK24B04)
文摘Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
基金partially funded by KFUP Munder Project#IN161006
文摘We consider a quasilinear heat system in the presence of an integral term and establish a general and optimal decay result from which improves and generalizes several stability results in the literature.
基金Project supported by the National Natural Science Foundation of China(Nos.11702135,11271188,and 11672164)the Natural Science Foundation of Jiangsu Province of China(No.BK20170775)+1 种基金the China Postdoctoral Science Foundation(No.2016M601798)the Jiangsu Planned Project for Postdoctoral Research Funds of China(No.1601169B)。
文摘The thermal convection of a Jeffreys fluid subjected to a plane Poiseuille flow in a fluid-porous system composed of a fluid layer and a porous layer is studied in the paper.A linear stability analysis and a Chebyshevτ-QZ algorithm are employed to solve the thermal mixed convection.Unlike the case in a single layer,the neutral curves of the two-layer system may be bi-modal in the proper depth ratio of the two layers.We find that the longitudinal rolls(LRs)only depend on the depth ratio.With the existence of the shear flow,the effects of the depth ratio,the Reynolds number,the Prandtl number,the stress relaxation,and strain retardation times on the transverse rolls(TRs)are also studied.Additionally,the thermal instability of the viscoelastic fluid is found to be more unstable than that of the Newtonian fluid in a two-layer system.In contrast to the case for Newtonian fluids,the TRs rather than the LRs may be the preferred mode for the viscoelastic fluids in some cases.