期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of red-yellow soil acidification on seed germination of Chinese pine
1
作者 TangHS WangRS 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第1期115-119,共5页
Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil... Acid treatments significantly change the physical and chemical properties of red yellow soil by lowering its pH value and leaching out aluminum(Al) ions that are harmful to the growth of plants. The structure of soil will be damaged, resulting in higher viscosity, higher water retention rate and lower air permeability of the soil. The germination rate of Chinese pine( Pinus tabulacformic Carr. ) seeds sowed in soil treated with sulphuric acid(H 2SO 4) decreased compared to that for untreated soil. The direct cause was the large amount of Al ions leached out because of low pH values(≥3.5). The added acid decreased the soil aggregation and increased the number of micro aggregates(under 250 μm in diameter). Such changes increased the soil's viscosity, which tied the pine needles to the soil after the seeds had germinated and prevented the seedlings from fully developing. 展开更多
关键词 aluminum ion germination of Chinese pine red yellow soil soil aggregates soil viscosity
下载PDF
Time-dependent surrounding soil pressure and mechanical response of tunnel lining induced by surrounding soil viscosity 被引量:5
2
作者 MIAO JinBo LU DeChun +2 位作者 LIN QingTao KONG FanChao DU XiuLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第11期2453-2468,共16页
A numerical simulation method of shield tunnel excavation is developed to capture the time-dependent deformation behaviour of surrounding soil. The simulation method consists of four parts:(i) an elastic-plastic-visco... A numerical simulation method of shield tunnel excavation is developed to capture the time-dependent deformation behaviour of surrounding soil. The simulation method consists of four parts:(i) an elastic-plastic-viscous constitutive model that can not only reasonably describe the viscous deformation behaviour of soil, but also appropriately calculate the plastic deformation under typical stress paths of excavation;(ii) simulation of main factors related to shield tunnel excavation, including the shield machine, face pressure, lining, grout behavior, and contacts between multiple media;(iii) a simulation procedure for excavation to reflect the process of shield tunnel excavation and achieve reasonable stress and strain fields at the end of the construction stage;(iv) a creep process that is used to investigate the long-term mechanical behaviours of the surrounding soil and tunnel lining. Taking the CK570H tunnel project in Taipei as the background, a numerical simulation is conducted by adopting the developed simulation method. Based on the simulation results, the radial and circumferential stresses acting on the lining, which are induced by the surrounding soil viscosity, are analysed. The rule of the mechanical response of lining, including its deformation, bending moment, and axial force, with time is revealed. On this basis, the long-term safety of the lining is evaluated. 展开更多
关键词 TUNNEL surrounding soil pressure soil viscosity shield excavation numerical simulation method time-dependent behaviour
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部