In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation. Part of them will become volatiles and, together with coal smoke, enter into atmosphere, some will remain in...In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation. Part of them will become volatiles and, together with coal smoke, enter into atmosphere, some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles, and the rest will be retained in ash and slag. Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the composition of coal ashes is dependent on that of minerals and organic matter in coal. This paper deals with the chemical composition of coal ashes, the distribution of trace elements in them and their petrological characteristics, and also studies the relationship between the yield of coal ashes and the distribution of trace elements. In addition, a preliminary study is also undertaken on the factors that affect the chemical composition of coal ashes. As viewed from the analyses of coal ash samples collected from the Yanzhou mining district, it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials, glassy materials and uncombusted organic matter and the major chemical compositions are SiO 2, Al 2O 3, Fe 2O 3, and CaO, as well as minor amounts of SO 3, P 2O 5, Na 2O, K 2O and TiO 2. During the combustion of coal, its trace elements will be redistributed and most of them are enriched in coal ashes. At the same time, the concentrations of the trace elements in flying ash are much higher than those of bottom ash, i.e., with decreasing particle-size of coal ashes their concentrations will become higher and higher. So the contents of trace elements are negatively proportional to the particle-size of coal ashes. There has been found a positive correlation between the trace elements Th, V, Zn, Cu and Pb and the yield of coal ashes while a negative correlation between Cl and the yield of coal ashes.展开更多
In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan ...In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan electron microscopy and energy dispersive X-ray analysis, and the transformation characteristics of the compositions and crystal phases were studied. The results show that the size of slag granules decreases as the slagging temperature increases; the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃, and that of the coal ash II reduces to about 65% when the temperature is increased up to 1 500 ℃; the encroachment of molten coal ash to the combustion liner is strengthened. At the same time, the diffusion and the segregation of the compositions in combustion liners have selectivity, which is in favor of enhancing the content of crystal phases, weakening the conglutination among molten slag compositions and combustion liner, and avoiding yielding big clinkers. But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner, and makes the slag encroachment to the liner become more serious.展开更多
Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of whic...Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.展开更多
In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources ...In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources was increased. The physical and geochemical characteristics of CCA were site-specific which determined by both inherent coal-source quality and combustion condition. This study was intended to characterize the physical, chemical and mineralogical properties of a coal-combustion ash (CCA) from a site specific power plant and evaluate the leachate characteristic of some scenario on the co-placement of CCA with coal-mine waste rock. The physical properties such as specific gravity, dry density, porosity and particle size distribution were determined. Chemically, the CCA sample is enriched mainly in silica, aluminum, iron, and magnesium along with a little amount of calcium and sodium which includes in the class C fly ash category. Moreover, it is found that the mineral phases identified in the sample were quartz, mullite, aragonite, magnetite, hematite, and spinel. Co-placement experiment with mudstone waste rock shows that the CCA, though it has limited contribution to the decreasing permeability, has important contributed to increase the quality of leachate through releasing higher alkalinity. Moreover, addition of CCA did not affect to the increase of the trace metal element in the leachate. Hence, utilization of CCA by co-placement with coal mine waste rock in the dumping area is visible to be implemented.展开更多
文摘In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation. Part of them will become volatiles and, together with coal smoke, enter into atmosphere, some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles, and the rest will be retained in ash and slag. Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the composition of coal ashes is dependent on that of minerals and organic matter in coal. This paper deals with the chemical composition of coal ashes, the distribution of trace elements in them and their petrological characteristics, and also studies the relationship between the yield of coal ashes and the distribution of trace elements. In addition, a preliminary study is also undertaken on the factors that affect the chemical composition of coal ashes. As viewed from the analyses of coal ash samples collected from the Yanzhou mining district, it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials, glassy materials and uncombusted organic matter and the major chemical compositions are SiO 2, Al 2O 3, Fe 2O 3, and CaO, as well as minor amounts of SO 3, P 2O 5, Na 2O, K 2O and TiO 2. During the combustion of coal, its trace elements will be redistributed and most of them are enriched in coal ashes. At the same time, the concentrations of the trace elements in flying ash are much higher than those of bottom ash, i.e., with decreasing particle-size of coal ashes their concentrations will become higher and higher. So the contents of trace elements are negatively proportional to the particle-size of coal ashes. There has been found a positive correlation between the trace elements Th, V, Zn, Cu and Pb and the yield of coal ashes while a negative correlation between Cl and the yield of coal ashes.
基金Project(50576005) supported by the National Natural Science Foundation of China
文摘In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan electron microscopy and energy dispersive X-ray analysis, and the transformation characteristics of the compositions and crystal phases were studied. The results show that the size of slag granules decreases as the slagging temperature increases; the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃, and that of the coal ash II reduces to about 65% when the temperature is increased up to 1 500 ℃; the encroachment of molten coal ash to the combustion liner is strengthened. At the same time, the diffusion and the segregation of the compositions in combustion liners have selectivity, which is in favor of enhancing the content of crystal phases, weakening the conglutination among molten slag compositions and combustion liner, and avoiding yielding big clinkers. But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner, and makes the slag encroachment to the liner become more serious.
基金supported by the Fundamental Research Funds for the Central Universities(2017CXNL04)。
文摘Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.
文摘In the last few decades, the utilization of coal to generate electricity was rapidly increasing. Consequently, the production of coal combustion ash (CCA) as a by-product of coal utilization as primary energy sources was increased. The physical and geochemical characteristics of CCA were site-specific which determined by both inherent coal-source quality and combustion condition. This study was intended to characterize the physical, chemical and mineralogical properties of a coal-combustion ash (CCA) from a site specific power plant and evaluate the leachate characteristic of some scenario on the co-placement of CCA with coal-mine waste rock. The physical properties such as specific gravity, dry density, porosity and particle size distribution were determined. Chemically, the CCA sample is enriched mainly in silica, aluminum, iron, and magnesium along with a little amount of calcium and sodium which includes in the class C fly ash category. Moreover, it is found that the mineral phases identified in the sample were quartz, mullite, aragonite, magnetite, hematite, and spinel. Co-placement experiment with mudstone waste rock shows that the CCA, though it has limited contribution to the decreasing permeability, has important contributed to increase the quality of leachate through releasing higher alkalinity. Moreover, addition of CCA did not affect to the increase of the trace metal element in the leachate. Hence, utilization of CCA by co-placement with coal mine waste rock in the dumping area is visible to be implemented.