The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-...The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying ...The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying the influence factors of the barrel viscous damper and pipe hoop in pipeline vibration reduction.The performance of the damper under different frequency and amplitude was researched respectively,the results showed that damping effect dependsed mainly on frequency and was not related to amplitude.Damper will fail when its vibration frequency exceeds its limit working frequency which was 40 Hz in test.The mechanical properties and energy dissipation were analyzed by using the Maxwell model,which explains experimental results well.According to damping effect and calculation of stiffness with ANSYS in different hoop width,hoop stiffness should match pipe stiffness and keep uniform along transfer path.Damping effect will get worse when local stiffness is too small or too large.Finally,the outlet pipeline vibration was decreased by 70%after using appropriate pipe hoop width and replacing the original damping liquid.展开更多
Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection...Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.展开更多
The formation of thrombus is closely related to the hydrodynamical conditions. Chandler's experiment and further research showed that the cause of thrombus formed in the lower meniscus might be that the fluid part...The formation of thrombus is closely related to the hydrodynamical conditions. Chandler's experiment and further research showed that the cause of thrombus formed in the lower meniscus might be that the fluid particles at relatively high speed struck on the lower meniscus leading to the gathering of platelet and red blood cells(RBC). The motion of viscous liquid column with finite length and two free surface in a vertical straight tube under the action of magnetic fields was studied in this paper, numerical solution was obtained by the time dependent method in a finite difference techniques. The results show that under the action of a proper magnetic field, the axial velocity at the lower meniscus near the axis will decrease, strike on the lower meniscus will be reduced and then thrombus formation at the lower meniscus can be avoided. This result provides a guide to further experimental research on the mechanism of thrombus formation and medical treatment to thrombus.展开更多
文摘The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
基金Supported by the National Basic Research Program of China(No.2012CB026000)the Beijing Education Commission Special Fund andDoctoral Degree Fund(No.20110010110009)
文摘The centrifugal air compressor outlet pipeline vibration was not decreased after barrel viscous dampers were installed in a petrochemical plant in Tianjin.A pipeline-damper experiment apparatus was built for studying the influence factors of the barrel viscous damper and pipe hoop in pipeline vibration reduction.The performance of the damper under different frequency and amplitude was researched respectively,the results showed that damping effect dependsed mainly on frequency and was not related to amplitude.Damper will fail when its vibration frequency exceeds its limit working frequency which was 40 Hz in test.The mechanical properties and energy dissipation were analyzed by using the Maxwell model,which explains experimental results well.According to damping effect and calculation of stiffness with ANSYS in different hoop width,hoop stiffness should match pipe stiffness and keep uniform along transfer path.Damping effect will get worse when local stiffness is too small or too large.Finally,the outlet pipeline vibration was decreased by 70%after using appropriate pipe hoop width and replacing the original damping liquid.
基金The authors gratefully acknowledge the support of the National Nature Science Foundation of China(No.11774378)。
文摘Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.
文摘The formation of thrombus is closely related to the hydrodynamical conditions. Chandler's experiment and further research showed that the cause of thrombus formed in the lower meniscus might be that the fluid particles at relatively high speed struck on the lower meniscus leading to the gathering of platelet and red blood cells(RBC). The motion of viscous liquid column with finite length and two free surface in a vertical straight tube under the action of magnetic fields was studied in this paper, numerical solution was obtained by the time dependent method in a finite difference techniques. The results show that under the action of a proper magnetic field, the axial velocity at the lower meniscus near the axis will decrease, strike on the lower meniscus will be reduced and then thrombus formation at the lower meniscus can be avoided. This result provides a guide to further experimental research on the mechanism of thrombus formation and medical treatment to thrombus.