In this paper, a new 2-D vortex method is developed, which treats the vorticity diffusion in a deterministical way. The Laplacian operator, which describes vorticity diffusion, is approximated by a contour integral. T...In this paper, a new 2-D vortex method is developed, which treats the vorticity diffusion in a deterministical way. The Laplacian operator, which describes vorticity diffusion, is approximated by a contour integral. The numerical results of two model problems show that this method has a good accuracy. A primary error estimation is given, and the self-adaptive vortex blob and the boundary conditions are discussed.展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri- bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous f...Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri- bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous flows. In the area far away from the body, the traditional cloud of isotropic points is used, while in the adjacent area, the cloud of anisotropic points is distributed. In this way, the point spacing normal to the wall can be small enough for simulating the boundary layer, and meanwhile, the total number of points in the computational do- main can be controlled due to large spacing in other tangential direction through the anisotropic way. A fast mov- ing technique of clouds of points at each time-step is presented based on the attenuation law of disturbed motion for unsteady flows involving moving boundaries. In the mentioned cloud of points, a uniform weighted least- square curve fit method is utilized to discretize the spatial derivatives of the Navier-Stokes equations. The pro- posed gridless method, coupled with a dual time-stepping method and the Spalart-Allmaras turbulence model, is implemented for the Navier-Stokes equations. The computational results of unsteady viscous flows around a NLR7301 airfoil with an oscillating flap and a pitching NACA0012 airfoil are presented in a good agreement with the available experimental data.展开更多
Generally the incompressible viscous flow problem is described by the Navier-Stokes equation. Based on the weighted residual method the discrete formulation of element-free Galerkin is inferred in this paper. By the s...Generally the incompressible viscous flow problem is described by the Navier-Stokes equation. Based on the weighted residual method the discrete formulation of element-free Galerkin is inferred in this paper. By the step-bystep computation in the field of time, and adopting the least-square estimation of the-same-order shift, this paper has calculated both velocity and pressure from the decoupling independent equations. Each time fraction Newton-Raphson iterative method is applied for the velocity and pressure. Finally, this paper puts the method into practice of the shear-drive cavity flow, verifying the validity, high accuracy and stability.展开更多
The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-...The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.展开更多
The incompressible N-S equations are solved by using a pseudo-compressibility method. Computation is made for both 60°and 70°sharp edged delta wings. Thepredictions for position and angle attack of vortex br...The incompressible N-S equations are solved by using a pseudo-compressibility method. Computation is made for both 60°and 70°sharp edged delta wings. Thepredictions for position and angle attack of vortex breakdown are investigated. The effectof the leading edge sweep angle on vortex breakdown is also discussed. Numerical resultsshow that the present method is an effective tool for investigation of vortex breakdown atlow speed.展开更多
Based on the field velocity method,a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper.Responses to pitching and plunging motions of the airfoil are simulated...Based on the field velocity method,a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper.Responses to pitching and plunging motions of the airfoil are simulated under different conditions.The obtained results are compared with those of moving grid method and good agreement is achieved.In the conventional field velocity method,the Euler solver is usually used to simulate the movement of the airfoil.However,when viscous effect is considered,unsteady Navier-Stokes equations have to be solved and the viscous flux correction must be taken into account.In this work,the viscous flux correction is introduced into the conventional field velocity method when non-uniform grid speed distribution is occurred.Numerical experiments for the flow around NACA0012 airfoil showed that the proposed approach can well simulate viscous moving boundary flow problems.展开更多
Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step fi...Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step finite element method at a relatively low Reynolds number of Re -- 200 for various dimensionless ratios of 0.25 ≤ G/D ≤2.0 and 1.0 ≤ L/D ≤ 4.0, where D is the cylinder diameter, L is the center-to-center distance between the two cylinders, and G is the gap between the lowest surface of the twin cylinders and the plane wall. The influences of G/D and L/D on the hydrodynamic force coefficients, Strouhal numbers, and vortex shedding modes were examined. Three different vortex shedding modes of the near wake were identified according to the numerical results. It was found that the hydrodynamic force coefficients and vortex shedding modes are quite different with respect to various combinations of G/D and L/D. For very small values of G/D, the vortex shedding is completely suppressed, resulting in the root mean square (RMS) values of drag and lift coefficients of both cylinders and the Strouhal number for the downstream cylinder being almost zero. The mean drag coefficient of the upstream cylinder is larger than that of the downstream cylinder for the same combination of G/D and L/D. It is also observed that change in the vortex shedding modes leads to a significant increase in the RMS values of drag and lift coefficients.展开更多
In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement i...In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.展开更多
The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip bo...The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip boundary condition of the cylinders. The results show that as the spac ing ratio L/D≥4 , the three dimensionality occurs in the wake. When L/D≤3.5 the wake keeps a two-dimensional state at the Reynolds number Re=220 . The critical spacing for the appearance of three-dimensional instability obtained is at the range 3.5〈 L/D 〈 4, similar to the critical spacing found in two-dimensional case. Two sources of instability from upstream and downstream cylinder generate a complicat ed vortex structures in the wake, investigated by streamlines topology analysis in the streamwise plane. Many other interesting problems were also addressed in this paper.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘In this paper, a new 2-D vortex method is developed, which treats the vorticity diffusion in a deterministical way. The Laplacian operator, which describes vorticity diffusion, is approximated by a contour integral. The numerical results of two model problems show that this method has a good accuracy. A primary error estimation is given, and the self-adaptive vortex blob and the boundary conditions are discussed.
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
基金Supported by the National Natural Science Foundation of China(10372043,11172134)the Fundingof Jiangsu Innovation Program for Graduate Education(CXZZ11-0192)~~
文摘Gridless method is developed for unsteady viscous flows involving moving boundaries. The point distri- bution of gridless method is implemented in an isotropic or anisotropic way according to the features of viscous flows. In the area far away from the body, the traditional cloud of isotropic points is used, while in the adjacent area, the cloud of anisotropic points is distributed. In this way, the point spacing normal to the wall can be small enough for simulating the boundary layer, and meanwhile, the total number of points in the computational do- main can be controlled due to large spacing in other tangential direction through the anisotropic way. A fast mov- ing technique of clouds of points at each time-step is presented based on the attenuation law of disturbed motion for unsteady flows involving moving boundaries. In the mentioned cloud of points, a uniform weighted least- square curve fit method is utilized to discretize the spatial derivatives of the Navier-Stokes equations. The pro- posed gridless method, coupled with a dual time-stepping method and the Spalart-Allmaras turbulence model, is implemented for the Navier-Stokes equations. The computational results of unsteady viscous flows around a NLR7301 airfoil with an oscillating flap and a pitching NACA0012 airfoil are presented in a good agreement with the available experimental data.
文摘Generally the incompressible viscous flow problem is described by the Navier-Stokes equation. Based on the weighted residual method the discrete formulation of element-free Galerkin is inferred in this paper. By the step-bystep computation in the field of time, and adopting the least-square estimation of the-same-order shift, this paper has calculated both velocity and pressure from the decoupling independent equations. Each time fraction Newton-Raphson iterative method is applied for the velocity and pressure. Finally, this paper puts the method into practice of the shear-drive cavity flow, verifying the validity, high accuracy and stability.
基金supported by the National Natural Science Foundation of China(Nos.12072156, 12032012)the Foundation of Rotor Aerodynamic Key Laboratory (No.RAL20190102)the Priority Academic Program Development Project of Jiangsu Higher Education Institutions(PAPD)。
文摘The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.
文摘The incompressible N-S equations are solved by using a pseudo-compressibility method. Computation is made for both 60°and 70°sharp edged delta wings. Thepredictions for position and angle attack of vortex breakdown are investigated. The effectof the leading edge sweep angle on vortex breakdown is also discussed. Numerical resultsshow that the present method is an effective tool for investigation of vortex breakdown atlow speed.
基金This work was supported by The National Basic Research Program of China(Grant No.2007CB714600)Funding of Jiangsu Innovation Program for Graduate Education(Grant No.CXLX110170).
文摘Based on the field velocity method,a novel approach for simulating unsteady pitching and plunging motion of an airfoil is presented in this paper.Responses to pitching and plunging motions of the airfoil are simulated under different conditions.The obtained results are compared with those of moving grid method and good agreement is achieved.In the conventional field velocity method,the Euler solver is usually used to simulate the movement of the airfoil.However,when viscous effect is considered,unsteady Navier-Stokes equations have to be solved and the viscous flux correction must be taken into account.In this work,the viscous flux correction is introduced into the conventional field velocity method when non-uniform grid speed distribution is occurred.Numerical experiments for the flow around NACA0012 airfoil showed that the proposed approach can well simulate viscous moving boundary flow problems.
基金supported by the National Natural Science Foundation of China(Grants No.51409035,51279029,and 51490673)the Open Fund from the Key Laboratory of Harbor,Waterway and Sedimentation Engineering of Ministry of Communications,Nanjing Hydraulic Research Institute
文摘Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step finite element method at a relatively low Reynolds number of Re -- 200 for various dimensionless ratios of 0.25 ≤ G/D ≤2.0 and 1.0 ≤ L/D ≤ 4.0, where D is the cylinder diameter, L is the center-to-center distance between the two cylinders, and G is the gap between the lowest surface of the twin cylinders and the plane wall. The influences of G/D and L/D on the hydrodynamic force coefficients, Strouhal numbers, and vortex shedding modes were examined. Three different vortex shedding modes of the near wake were identified according to the numerical results. It was found that the hydrodynamic force coefficients and vortex shedding modes are quite different with respect to various combinations of G/D and L/D. For very small values of G/D, the vortex shedding is completely suppressed, resulting in the root mean square (RMS) values of drag and lift coefficients of both cylinders and the Strouhal number for the downstream cylinder being almost zero. The mean drag coefficient of the upstream cylinder is larger than that of the downstream cylinder for the same combination of G/D and L/D. It is also observed that change in the vortex shedding modes leads to a significant increase in the RMS values of drag and lift coefficients.
基金Project supported by the National Natural Science Foundation of China(Grant No.10771134).
文摘In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.
基金Project supported by the National Natural Science Foundation of China(Grant No :10272094)
文摘The flow around two tandem circular cylinders was studied by a three-dimensional numerical simulation of the Navier-Stokes equations at Re=220 . The improved virtual boundary method was applied to model the no-slip boundary condition of the cylinders. The results show that as the spac ing ratio L/D≥4 , the three dimensionality occurs in the wake. When L/D≤3.5 the wake keeps a two-dimensional state at the Reynolds number Re=220 . The critical spacing for the appearance of three-dimensional instability obtained is at the range 3.5〈 L/D 〈 4, similar to the critical spacing found in two-dimensional case. Two sources of instability from upstream and downstream cylinder generate a complicat ed vortex structures in the wake, investigated by streamlines topology analysis in the streamwise plane. Many other interesting problems were also addressed in this paper.