Based on HYPERCHEM, the structures of five phthalocyanie compounds were optimized with PM3 and their visible absorption maxima were calculated with ZINDO/S method by selecting appropriate p-p overlap weighting factor ...Based on HYPERCHEM, the structures of five phthalocyanie compounds were optimized with PM3 and their visible absorption maxima were calculated with ZINDO/S method by selecting appropriate p-p overlap weighting factor (OWFp-p), the agreement with experiment was excellent. The relationship between OWF- and molecular structure parameters was obtained by the method of stepwise regression and was explained in terms of quantum theory. OWF-=0.58126+0.04562ANC1+0.03839X. Where, ANC1 and X are the symbols of average net charges on coordinated bonded nitrogens and electronegativity of central atom, respectively.展开更多
The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respecti...The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWFπ-π=?8.1537+6.5638BLN-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible ab- sorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital).展开更多
Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorp...Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorption spectrum shows that its gap band is 2.2 eV with singlet exciton bandwidth of 0.9 eV.展开更多
The in vitro interaction of nicotine and hemoglobin (Hb) in a metabolizing System was studied by spectroscopy assays. Visible spectra showed two isobestics, and fluorescence spectra showed static quenching with increa...The in vitro interaction of nicotine and hemoglobin (Hb) in a metabolizing System was studied by spectroscopy assays. Visible spectra showed two isobestics, and fluorescence spectra showed static quenching with increasing of nicotine dose. Meanwhile, the CD spectra intensity reduced, showing the conformation of Hb varied markedly through the interaction. All these results suggested that the interaction of nicotine or its metabolites and Hb might do harm to physicological function of Hb.展开更多
Visible spectroscopic and electrochemical methods were used to study the interactions between DNA and fuchsin basic(FB). FB has an irreversible electro-oxidation peak in 5 mmol/L Tris-HCl buffer solution at pH = 7.4...Visible spectroscopic and electrochemical methods were used to study the interactions between DNA and fuchsin basic(FB). FB has an irreversible electro-oxidation peak in 5 mmol/L Tris-HCl buffer solution at pH = 7.4 on a glassy carbon electrode(GCE). After adding certain concentration of dsDNA, the oxidation peak current of FB decreases, but the peak potential hardly changes. The visible absorption spectroscopic study shows that the binding mode of FB to dsDNA is intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is smaller than 0. 2, and anew substance, which produces a new absorption peak, is obtained via a covalent binding between dsDNA and FB apart from intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is larger than 0. 2. The visible absorption spectra varies no longer when the ratio of the concentration of dsDNA'to FB is larger than 1.5. A mean binding ratio of dsDNA to FB was determined to be 1.4: 1, suggesting that two complexes FB-dsDNA and FB-2dsDNA be formed. The interaction between FB and ssDNA was only electrostatic binding. The more powerful interaction of FB with dsDNA than with ssDNA may be applied for the recognition of dsDNA and ssDNA, and in DNA biosensor as hybridization indicator.展开更多
A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by t...A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.展开更多
This work presents the saturable absorption(SA) properties of CsPbBr_3 perovskite quantum dots(QDs). The perovskite QDs show excellent SA performance with a nonlinear absorption coefficient of-35 × 10^(-2) cm∕GW...This work presents the saturable absorption(SA) properties of CsPbBr_3 perovskite quantum dots(QDs). The perovskite QDs show excellent SA performance with a nonlinear absorption coefficient of-35 × 10^(-2) cm∕GW and a figure of merit of 3.7 × 10^(-14) esu cm. Further, their use as saturable absorbers in a passively Q-switched visible solid-state laser for the generation of soliton pulses is demonstrated. These results demonstrate thepotential for the perovskite QDs to act as saturable absorbers.展开更多
In the present work,a new combination of Raman and ultraviolet and visible(UV/Vis)absorption spectroelectrochemistry in reflection mode is proposed.The new experimental setup allows obtaining the two kinds of spectros...In the present work,a new combination of Raman and ultraviolet and visible(UV/Vis)absorption spectroelectrochemistry in reflection mode is proposed.The new experimental setup allows obtaining the two kinds of spectroscopic data without interferences concomitantly with the electrochemical information.To the best of our knowledge,it is the first time to report the simultaneous obtention of electrochemical,electronic,and vibrational information in the same experiment.This new combination provides time-resolved information about the processes that are taking place on the electrode/solution interface which has significant implications in different fields of chemistry,such as modification of electrodes,studies of electrocatalytic reaction mechanisms,development of sensors,among others.Two different systems were used to demonstrate the advantages and capabilities of the brand-new technique,namely,the oxidation of potassium ferrocyanide,an out-sphere system that is usually employed in the validation of SEC techniques,and the electrochemical-surface enhanced Raman spectroscopy(EC-SERS)detection of crystal violet by in-situ formation of the silver SERS substrate,where the UV/Vis spectra were used to follow the formation of the SERS substrate,whereas the Raman response of a probe molecule was used to confirm either the formation of a nanostructured surface and to obtain the fingerprint of the molecule with a high time resolution.The brand-new experimental setup has shown to be useful,versatile,robust,compact,and easy to use for future applications.展开更多
Photosensitization related to energy/electron transfer process is of great importance to natural photosynthesis.Herein,we proposed a promising strategy to improve the sensitizing ability of the typical photoactive MOF...Photosensitization related to energy/electron transfer process is of great importance to natural photosynthesis.Herein,we proposed a promising strategy to improve the sensitizing ability of the typical photoactive MOFs(UiO-Ir)by engineering its metal coordination center with NBI(1,8-naphthalenebenzimidizole)chromophore.The resulting MOFs(UiO-Ir-NBI)exhibited a strong sensitizing ability for significantly boosting photosynthesis.Impressively,the catalytic yield of 2-chloroethyl ethyl sulfoxide with UiO-Ir-NBI can reach 99%,over 6 times higher than that with UiO-Ir(16.4%).Moreover,UiO-Ir-NBI exhibited an excellent catalytic stability and a broad substrate tolerance,highlighting its great application prospect.Systematic investigations revealed that the strong visible light absorption,long excited state lifetime and efficient electron-hole separation of UiO-Ir-NBI greatly contributed to harvesting visible light and facilitating interface electron/energy transfer for efficient solar energy utilization.This work provides a new horizon to boost photosythesis of MOFs by engineering their metal sensitizing centers at a molecular level.展开更多
Un-doped and Cu-doped ZnS(ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction(SILAR) method. The UV–visible absorption studies have been used to calculate the band gap values of t...Un-doped and Cu-doped ZnS(ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction(SILAR) method. The UV–visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu^2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm.The peak positions of the luminescence showed a red shift as the Cu^2+ C ion concentration was increased, which indicates that the acceptor level(of Cu^2+) is getting close to the valence band of ZnS.展开更多
Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstra...Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstrated that the film was crack-free, and that granular nanoparticles were homogenously distributed on the film surface. The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6 nm, respectively, which is due to the high porosity of the film. Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band, which might be due to an increased amount of oxygen va- cancies on the lattice surface. The observed results of the nanoporous ZnO film indicates a promising application in the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).展开更多
Structural,optical and magnetic properties are reported for new synthesized perovskite materials.Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) and Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3) compositions were prepared via solid sta...Structural,optical and magnetic properties are reported for new synthesized perovskite materials.Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) and Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3) compositions were prepared via solid state reaction.X-ray analysis confirms that both compositions show feature of perovskite structure.Rietveld refinement method was used to confirm the phase formation and investigate the structure and space group.The study demonstrates the formation of orthorhombic structure with Pnma space group for Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) while the composition Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3) structure adopts Pbnm symmetry.UV–vis spectroscopy measurements show very broad and intense UV–visible light absorption,the estimated band gap ranges between 2.07 and 2.15 eV.Magnetic measurements were carried out for the compositions Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) and Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3).The hysteresis loops of both samples at 300 and 10 K show a strong ferromagnetic behavior.The temperature dependent magnetization at 0.05 T under field-cooled(FC)and zero field cooled(ZFC)modes shows magnetic frustration or spin glass-like behavior.展开更多
Black polyimides(BPIs)have attracted increasing attention owing to their growing demand in optoelectronics.However,commonly used black polyimides doped with black fillers suffer from poor mechanical and electrical pro...Black polyimides(BPIs)have attracted increasing attention owing to their growing demand in optoelectronics.However,commonly used black polyimides doped with black fillers suffer from poor mechanical and electrical properties.To address these issues,a new diamine(2,5-bis(4′-amino-[1,1′-biphenyl]-4-yl)-3,4-bis(4-fluorophenyl)cyclopenta-2,4-dien-1-one,TPCPFPDA)bearing a tetraphenylcyclopentadienone(TPCP)moiety bonded with benzene and fluorine units was synthesized.The diamine was reacted with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)to yield a soluble intrinsic black polyimide(TPCPFPPI).Bonding fluorine(auxochrome group)and benzene units to TPCP can increase the conjugation ofπ-electrons systems and facilitate the movement of electron throughout the bigπbond,respectively.Owing to the structural features,the synthesized TPCPFPPI exhibited complete visible-light absorption with high blackness and opacity.Its cutoff wavelength(λ_(cut))and CIE(Commission Internationale de I′Eclairage)parameter L^(*)were 684 nm and 1.33,respectively.Moreover,TPCPFPPI displayed exceptional electrical,mechanical,and thermal properties as well as excellent solubility.A detailed theoretical calculation was conducted to gain better insight into the electronic properties of the TPCPFPPI.Results showed that the blackness of TPCPFPPI was chiefly attributed to the electron transition from highest occupied molecular orbital(HOMO)to lowest unoccupied molecular orbital(LUMO)in the diamines,where the charges primarily migrated from the aryl groups in the 2-and 5-positions to the cyclopentadienone center.The as-obtained intrinsic BPI(TPCPFPPI),exhibiting both high solubility and outstanding overall properties,has important applications in photo-electronics.展开更多
文摘Based on HYPERCHEM, the structures of five phthalocyanie compounds were optimized with PM3 and their visible absorption maxima were calculated with ZINDO/S method by selecting appropriate p-p overlap weighting factor (OWFp-p), the agreement with experiment was excellent. The relationship between OWF- and molecular structure parameters was obtained by the method of stepwise regression and was explained in terms of quantum theory. OWF-=0.58126+0.04562ANC1+0.03839X. Where, ANC1 and X are the symbols of average net charges on coordinated bonded nitrogens and electronegativity of central atom, respectively.
文摘The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWFπ-π=?8.1537+6.5638BLN-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible ab- sorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital).
文摘Organic semiconductoe 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) has been synthetized with 1,8-naphthalic anhydride using chemical method.X-ray diffraction spectrum shows that it is monoclinic.Visible absorption spectrum shows that its gap band is 2.2 eV with singlet exciton bandwidth of 0.9 eV.
基金We thank the financial support of the National Natural Science Foundation of China(Grant.No.19935020)Research Fund for Doctoral Program of Higher Education.
文摘The in vitro interaction of nicotine and hemoglobin (Hb) in a metabolizing System was studied by spectroscopy assays. Visible spectra showed two isobestics, and fluorescence spectra showed static quenching with increasing of nicotine dose. Meanwhile, the CD spectra intensity reduced, showing the conformation of Hb varied markedly through the interaction. All these results suggested that the interaction of nicotine or its metabolites and Hb might do harm to physicological function of Hb.
文摘Visible spectroscopic and electrochemical methods were used to study the interactions between DNA and fuchsin basic(FB). FB has an irreversible electro-oxidation peak in 5 mmol/L Tris-HCl buffer solution at pH = 7.4 on a glassy carbon electrode(GCE). After adding certain concentration of dsDNA, the oxidation peak current of FB decreases, but the peak potential hardly changes. The visible absorption spectroscopic study shows that the binding mode of FB to dsDNA is intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is smaller than 0. 2, and anew substance, which produces a new absorption peak, is obtained via a covalent binding between dsDNA and FB apart from intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is larger than 0. 2. The visible absorption spectra varies no longer when the ratio of the concentration of dsDNA'to FB is larger than 1.5. A mean binding ratio of dsDNA to FB was determined to be 1.4: 1, suggesting that two complexes FB-dsDNA and FB-2dsDNA be formed. The interaction between FB and ssDNA was only electrostatic binding. The more powerful interaction of FB with dsDNA than with ssDNA may be applied for the recognition of dsDNA and ssDNA, and in DNA biosensor as hybridization indicator.
基金supported by the National Science Foundation of China(No.11204298,61205025,61274126 and 61306081)the Jilin Province Science and Technology Research Project(No.20140101060JC,20150519003JH and 20130522142JH)the Outstanding Young Scientist Program of CAS.
文摘A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.
基金National Natural Science Foundation of China(NSFC)(61378074,61475173)Youth Innovation Promotion Association Chinese Academy of Sciences(CAS)
文摘This work presents the saturable absorption(SA) properties of CsPbBr_3 perovskite quantum dots(QDs). The perovskite QDs show excellent SA performance with a nonlinear absorption coefficient of-35 × 10^(-2) cm∕GW and a figure of merit of 3.7 × 10^(-14) esu cm. Further, their use as saturable absorbers in a passively Q-switched visible solid-state laser for the generation of soliton pulses is demonstrated. These results demonstrate thepotential for the perovskite QDs to act as saturable absorbers.
基金support from Ministerio de Ciencia e innovación(No.PID2020-113154RB-C21)Ministerio de Economía,Industria y Competitividad(No.CTQ2017-83935-RAEI/FEDERUE)+4 种基金Junta de Castilla y León(No.BU297P18)Ministerio de Ciencia,Innovación y Universidades(No.RED2018-102412-T)J.V.P-R acknowledges Spanish Ministry of Economy,Industry,and Competitiveness for the Juan de la Cierva postdoctoral(No.FJCI-2017-32458)the University of Alcalá(No.CCG19/CC-071)S.H.thanks JCyL and European Social Fund for her predoctoral fellowship.
文摘In the present work,a new combination of Raman and ultraviolet and visible(UV/Vis)absorption spectroelectrochemistry in reflection mode is proposed.The new experimental setup allows obtaining the two kinds of spectroscopic data without interferences concomitantly with the electrochemical information.To the best of our knowledge,it is the first time to report the simultaneous obtention of electrochemical,electronic,and vibrational information in the same experiment.This new combination provides time-resolved information about the processes that are taking place on the electrode/solution interface which has significant implications in different fields of chemistry,such as modification of electrodes,studies of electrocatalytic reaction mechanisms,development of sensors,among others.Two different systems were used to demonstrate the advantages and capabilities of the brand-new technique,namely,the oxidation of potassium ferrocyanide,an out-sphere system that is usually employed in the validation of SEC techniques,and the electrochemical-surface enhanced Raman spectroscopy(EC-SERS)detection of crystal violet by in-situ formation of the silver SERS substrate,where the UV/Vis spectra were used to follow the formation of the SERS substrate,whereas the Raman response of a probe molecule was used to confirm either the formation of a nanostructured surface and to obtain the fingerprint of the molecule with a high time resolution.The brand-new experimental setup has shown to be useful,versatile,robust,compact,and easy to use for future applications.
基金supported by National Key R&D Program of China(No.2019YFA0705201)National Natural Science Foundation of China(No.22171209)。
文摘Photosensitization related to energy/electron transfer process is of great importance to natural photosynthesis.Herein,we proposed a promising strategy to improve the sensitizing ability of the typical photoactive MOFs(UiO-Ir)by engineering its metal coordination center with NBI(1,8-naphthalenebenzimidizole)chromophore.The resulting MOFs(UiO-Ir-NBI)exhibited a strong sensitizing ability for significantly boosting photosynthesis.Impressively,the catalytic yield of 2-chloroethyl ethyl sulfoxide with UiO-Ir-NBI can reach 99%,over 6 times higher than that with UiO-Ir(16.4%).Moreover,UiO-Ir-NBI exhibited an excellent catalytic stability and a broad substrate tolerance,highlighting its great application prospect.Systematic investigations revealed that the strong visible light absorption,long excited state lifetime and efficient electron-hole separation of UiO-Ir-NBI greatly contributed to harvesting visible light and facilitating interface electron/energy transfer for efficient solar energy utilization.This work provides a new horizon to boost photosythesis of MOFs by engineering their metal sensitizing centers at a molecular level.
文摘Un-doped and Cu-doped ZnS(ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction(SILAR) method. The UV–visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu^2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm.The peak positions of the luminescence showed a red shift as the Cu^2+ C ion concentration was increased, which indicates that the acceptor level(of Cu^2+) is getting close to the valence band of ZnS.
文摘Sol-gel-derived nanoporous ZnO film has been successfully deposited on glass substrate at 200 °C and subsequently annealed at different temperatures of 300, 400 and 600 °C. Atomic force micrographs demonstrated that the film was crack-free, and that granular nanoparticles were homogenously distributed on the film surface. The average grain size of the nanoparticles and RMS roughness of the scanned surface area was 10 nm and 13.6 nm, respectively, which is due to the high porosity of the film. Photoluminescence (PL) spectra of the nanoporous ZnO film at room temperature show a diffused band, which might be due to an increased amount of oxygen va- cancies on the lattice surface. The observed results of the nanoporous ZnO film indicates a promising application in the development of electrochemical biosensors due to the porosity of film enhancing the higher loading of biomacromolecules (enzyme and proteins).
基金MohammedⅥPolytechnic Universitythe Office Chérifien des Phosphates in the Moroccan Kingdom(OⅥCP group)University Hassan 1st for their support。
文摘Structural,optical and magnetic properties are reported for new synthesized perovskite materials.Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) and Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3) compositions were prepared via solid state reaction.X-ray analysis confirms that both compositions show feature of perovskite structure.Rietveld refinement method was used to confirm the phase formation and investigate the structure and space group.The study demonstrates the formation of orthorhombic structure with Pnma space group for Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) while the composition Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3) structure adopts Pbnm symmetry.UV–vis spectroscopy measurements show very broad and intense UV–visible light absorption,the estimated band gap ranges between 2.07 and 2.15 eV.Magnetic measurements were carried out for the compositions Ba_(0.3)La_(0.7)Ti_(0.3)Fe_(0.7)O_(3) and Ba_(0.1)La_(0.9)Ti_(0.1)Fe_(0.9)O_(3).The hysteresis loops of both samples at 300 and 10 K show a strong ferromagnetic behavior.The temperature dependent magnetization at 0.05 T under field-cooled(FC)and zero field cooled(ZFC)modes shows magnetic frustration or spin glass-like behavior.
基金supported by the National Natural Science Foundation of China (Grant Nos.51973055&52103004)the Natural Science Foundation of Hunan Province (Grant No.2021JJ50004)+1 种基金the Science Research Project of Hunan Provincial Department of Education (Grant No.21A0364)the Student Innovation and Entrepreneurship Training Program of Hunan Province (Grant No.S202211535096)。
文摘Black polyimides(BPIs)have attracted increasing attention owing to their growing demand in optoelectronics.However,commonly used black polyimides doped with black fillers suffer from poor mechanical and electrical properties.To address these issues,a new diamine(2,5-bis(4′-amino-[1,1′-biphenyl]-4-yl)-3,4-bis(4-fluorophenyl)cyclopenta-2,4-dien-1-one,TPCPFPDA)bearing a tetraphenylcyclopentadienone(TPCP)moiety bonded with benzene and fluorine units was synthesized.The diamine was reacted with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)to yield a soluble intrinsic black polyimide(TPCPFPPI).Bonding fluorine(auxochrome group)and benzene units to TPCP can increase the conjugation ofπ-electrons systems and facilitate the movement of electron throughout the bigπbond,respectively.Owing to the structural features,the synthesized TPCPFPPI exhibited complete visible-light absorption with high blackness and opacity.Its cutoff wavelength(λ_(cut))and CIE(Commission Internationale de I′Eclairage)parameter L^(*)were 684 nm and 1.33,respectively.Moreover,TPCPFPPI displayed exceptional electrical,mechanical,and thermal properties as well as excellent solubility.A detailed theoretical calculation was conducted to gain better insight into the electronic properties of the TPCPFPPI.Results showed that the blackness of TPCPFPPI was chiefly attributed to the electron transition from highest occupied molecular orbital(HOMO)to lowest unoccupied molecular orbital(LUMO)in the diamines,where the charges primarily migrated from the aryl groups in the 2-and 5-positions to the cyclopentadienone center.The as-obtained intrinsic BPI(TPCPFPPI),exhibiting both high solubility and outstanding overall properties,has important applications in photo-electronics.
基金financially supported by the National Key Research and Development Program of China(2019YFA0705900)funded by the Ministry of Science and Technology(MOST)the National Natural Science Foundation of China(52073281,22135007 and 21875244)the Natural Science Foundation of Jilin Province(20230101122JC)。