The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precurs...The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precursors in this paper. The properties of as-synthesized materials were studied by X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM), diffuse reflectance spectroscopy(DRS), and ultraviolet–visible(UV-Vis) spectroscopy. The effects of irradiation time, methylene blue(MB) concentration, catalyst dosage, and p H value upon the degradation of MB were studied. Magnetic properties of the samples showed that both as-synthesized Fe/FeS photocatalysts are magnetically recoverable, eliminating the need for conventional filtration steps. Degradation of 5 ppm of the MB solution by mechano-thermally synthesized Fe/FeS with a photocatalyst dosage of 1 kg/m^3 at pH 11 can reach 96% after 12 ks irradiation under visible light. The photocatalytic efficiency is higher in alkaline solution. The kinetics of photocatalytic degradation in both samples is controlled by a first-order reaction. However, the rate-constant value in the thermally synthesized Fe/FeS photocatalyst sample is only 1.5 times greater than that of the mechano-thermally synthesized one.展开更多
The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflecta...The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.展开更多
The plasmonic Ag nanoparticles(NPs)loaded g-C_(3)N_(4)photocatalysts(Ag/C_(3)N_(4))were successfully prepared via a conventional procedure.The fully characterized Ag/C_(3)N_(4)photocatalysts exhibited excellent stabil...The plasmonic Ag nanoparticles(NPs)loaded g-C_(3)N_(4)photocatalysts(Ag/C_(3)N_(4))were successfully prepared via a conventional procedure.The fully characterized Ag/C_(3)N_(4)photocatalysts exhibited excellent stability and greatly enhanced visible light-driven photocatalytic performance both in the degradation of methyl orange(MO)and H_(2)evolution from water splitting.The 1.0 wt%Ag/C_(3)N_(4)allowed the highest reaction rate of 0.0294 min^(−1)to be obtained in the MO degradation,which is about 2.3 times higher than the reaction rate of g-C_(3)N_(4)alone of 0.0129 min^(−1).Furthermore,the optimum H_(2)evolution and the k value attained 20μmol and 1.573 h^(−1),respectively,after 12 h of visible light irradiation.The surface plasmon resonance effect of Ag NPs and the charge transfer between the two components of the photocatalyst,strongly promote generation of photoinduced charge carriers while suppressing their recombination.These factors are held responsible for the enhanced visible light photocatalytic performance of Ag/C_(3)N_(4).Our methodology will provide guidance for the design and synthesis of plasmon-enhanced visible light photocatalysts derived from Ag NPs and g-C_(3)N_(4)and their applications in environmental remediation and green energy development.展开更多
The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B ...The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO2 under visible light irradiation (λ > 400 nm) has been evaluated. Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of 5 mg/L of initial concentration of OII and RhB at room temperature. The trapping effects of different scavengers results proved that the oxidation of OII and RhB mainly occurred by the direct oxidization of h+ and ·O2- radicals, while the ·OH radicals played only a relatively minor role in the direct oxidization process.展开更多
particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -18...particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.展开更多
A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nan...A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nanoheterostructure was characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy(UV-vis/DRS). The TEM and HRTEM images of 10%InVO4-40%Cu2O-50%TiO2 confirm the formation of nanoheterostructures resulting from contact of the nanosized TiO2, Cu2O and InVO4 in the size of 5–20 nm in diameter. The InVO4-Cu2O-TiO2 nanoheterostructure, when compared with TiO2, Cu2O, InVO4, InVO4-TiO2 and Cu2O-TiO2, shows significant enhancement in the photocatalytic performance for the degradation of methyl orange(MO) under visible-light irradiation. With a 9 W energy-saving fluorescent lamp as the visible-light source, the MO degradation rate of 10%InVO4-40%Cu2O-50%TiO2 reaches close to 90% during 5 h, and the photocatalytic efficiency is maintained at over 90% after six cycles. This may be mainly ascribed to the matched bandgap configurations of TiO2, Cu2O and InVO4, and the formations of two p-n junctions by the p-type semiconductor Cu2O with the n-type semiconductors TiO2 and InVO4, all of which favor spatial photogenerated charge carrier separation. The X-ray photoelectron spectroscopy(XPS) characterization for the used 10%InVO4-40%Cu2O-50%TiO2 reveals that only a small shakeup satellite peak appears for Cu(II) species, implying bearable photocorrosion of Cu2O. This work could provide new insight into the design and preparation of novel visible-light-responding semiconductor composites.展开更多
A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks sh...A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.展开更多
The performance of Mn-TiO2/sepiolite photocatalysts prepared by the solgel method and calcinated at different temperatures was studied in the photocatalytic degradation of direct fast emerald green dye under visible l...The performance of Mn-TiO2/sepiolite photocatalysts prepared by the solgel method and calcinated at different temperatures was studied in the photocatalytic degradation of direct fast emerald green dye under visible light irradiation,and a series of analytical techniques such as XRD,SEM,FTIR,TG-DSC,XPS,UV-vis-DRS and Raman spectroscopy were used to characterize the morphology,structure and optical properties of the photocatalysts.It is found that the anatase TiO2 was formed in all photocatalysts.Mn4+might incorporate into the lattice structure of TiO2 and partially replace Ti4+,thus causing the defects in the crystal structure and the broadening of the spectral response range of TiO2.At the same time,TiO2 particles were dispersed on the surface of the sepiolite,which immobilized TiO2 particles with sepiolite via the bond of Ti-O-Si.Mn-TiO2/sepiolite calcined at 400°C exhibits the highest photocatalytic activity and the degradation rate of direct fast emerald green is up to 98.13%.Meanwhile,it also shows good stability and universality.展开更多
Photocatalytic degradation of organic pollutants has become a hot research topic because of its low energy consumption and environmental-friendly characteristics.Bismuth oxide(Bi2O3)nanocrystals with a bandgap ranging...Photocatalytic degradation of organic pollutants has become a hot research topic because of its low energy consumption and environmental-friendly characteristics.Bismuth oxide(Bi2O3)nanocrystals with a bandgap ranging from 2.0 eV to 2.8 eV have attracted increasing attention due to high activity of photodegradation of organic pollutants by utilizing visible light.Though several methods have been developed to prepare Bi2O3-based semiconductor materials over recent years,it is still difficult to prepare highly active Bi2O3 catalysts in large scale with a simple method.Therefore,developing simple and feasible methods for the preparation of Bi2O3 nanocrystals in large scale is important for the potential applications in industrial wastewater treatment.In this work,we successfully prepared porous Bi2O3 in large scale via etching commercial Bi Sn powders,followed by thermal treatment with air.The acquired porous Bi2O3 exhibited excellent activity and stability in photocatalytic degradation of methylene blue.Further investigation of the mechanism witnessed that the suitable band structure of porous Bi2O3 allowed the generation of reactive oxygen species,such as O2^-·and·OH,which effectively degraded MB.展开更多
Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a ...Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.展开更多
A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrifici...A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrificial templating method and convex surface-induced confinement.The composite structure of single Au NP yolk-Ti02 shell-Au NPs,denoted as Au@Au(Ti02,was rendered and confirmed by the transmission electron microscopy analysis.Au@Au(Ti02 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(Ti02 by 77%and Au@P25 by 52%,respectively,in phenol degradation.展开更多
The graphic carbon nitride/polyaniline(g-C_(3)N_(4)/PANI)hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath.The photocatalytic activities of the g-C_(3)N_(4...The graphic carbon nitride/polyaniline(g-C_(3)N_(4)/PANI)hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath.The photocatalytic activities of the g-C_(3)N_(4)/PANI composites were evaluated by using oxytetracycline(OTC)as model pollutants.The optimal g-C_(3)N_(4)/PANI composite(5%PANI:the g-C_(3)N_(4)/PANI hybrid with 5 wt.%of PANI)showed an enhancement degradation rate of 5-fold compared to that of conventional g-C_(3)N_(4)under simulated-sunlight irradiation.In addition,the 5%PANI demonstrate significantly photocatalytic evolution H_(2)rate(163.2μmol/(g·hr))under the visible light irradiation.Furthermore,based on the results of optical performance and electrochemical testing,a possible mechanism was proposed,indicating that the incorporation of PANI into the traditional g-C_(3)N_(4)can effectively tune the electronic structures,improve the photo-generated electrons-holes separation and enhance extensive absorption of visible light.Such a g-C_(3)N_(4)/PANI hybrid nanocomposites could be envisaged to possess great potentials in practical wastewater treatment and water splitting.展开更多
Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance.In this study,we report a sol-gel synthesis approa...Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance.In this study,we report a sol-gel synthesis approach to obtain non-metal doped TiO_(2)with sponge-like structure and surface-phase junctions all at once.While doping of carbon and nitrogen shifted the activation wavelength to the visible-light region,the innovative use of perchloric acid as a pore-making agent led to the formation of three-dimensional lamellar and porous structure with surface-phase junctions.High surface area with catalytic active sites rendered by the sponge-like structure and surface-phase junctions contributed to the much improved photocatalytic degradation efficiency toward rhodamine B,tetracycline and Disperse Red 60 with excellent reusability and stability.The improved gen eration and separati on efficie ncy of the photo-induced charge carriers of the as-prepared TiO_(2)were supported by electrochemical impedance measurements and transient photocurrent responses.This method could also be applied to other photocatalysts to achieve structural alteration and element doping simultaneously.展开更多
Environmental photocatalysis is a promising technology for treating antibiotics in wastewater.In this study,a supercritical carbonization method was developed to synthesize a single-atom photocatalyst with a high load...Environmental photocatalysis is a promising technology for treating antibiotics in wastewater.In this study,a supercritical carbonization method was developed to synthesize a single-atom photocatalyst with a high loading of Ni(above 5 wt.%)anchored on a carbonnitrogen-silicate substrate for the efficient photodegradation of a ubiquitous environmental contaminant of tetracycline(TC).The photocatalyst was prepared from an easily obtained metal-biopolymer-inorganic supramolecular hydrogel,followed by supercritical drying and carbonization treatment.The low-temperature(300℃)supercritical ethanol treatment prevents the excessive structural degradation of hydrogel and greatly reduces the metal clustering and aggregation,which contributed to the high Ni loading.Atomic characterizations confirmed that Ni was present at isolated sites and stabilized by Ni-N and Ni-O bonds in a Ni-(N/O)_(6)-C/SiC configuration.A 5%Ni-C-Si catalyst,which performed the best among the studied catalysts,exhibited a wide visible light response with a narrow bandgap of 1.45 eV that could efficiently and repeatedly catalyze the oxidation of TC with a conversion rate of almost 100% within 40 min.The reactive species trapping experiments and electron spin resonance(ESR)tests demonstrated that the h+,and·O_(2)-were mainly responsible for TC degradation.The TC degradation mechanism and possible reaction pathways were provided also.Overall,this study proposed a novel strategy to synthesize a high metal loading singleatom photocatalyst that can efficiently remove TC with high concentrations,and this strategy might be extended for synthesis of other carbon-based single-atom catalysts with valuable properties.展开更多
基金financial support of University of Tehran for this researchfinancial support of Iran Nanotechnology Initiative Council
文摘The photocatalytic performance of mechano-thermally synthesized Fe/FeS nanostructures formed from micron-sized starting materials was compared with that of a thermally synthesized nanostructure with nano-sized precursors in this paper. The properties of as-synthesized materials were studied by X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometry(VSM), diffuse reflectance spectroscopy(DRS), and ultraviolet–visible(UV-Vis) spectroscopy. The effects of irradiation time, methylene blue(MB) concentration, catalyst dosage, and p H value upon the degradation of MB were studied. Magnetic properties of the samples showed that both as-synthesized Fe/FeS photocatalysts are magnetically recoverable, eliminating the need for conventional filtration steps. Degradation of 5 ppm of the MB solution by mechano-thermally synthesized Fe/FeS with a photocatalyst dosage of 1 kg/m^3 at pH 11 can reach 96% after 12 ks irradiation under visible light. The photocatalytic efficiency is higher in alkaline solution. The kinetics of photocatalytic degradation in both samples is controlled by a first-order reaction. However, the rate-constant value in the thermally synthesized Fe/FeS photocatalyst sample is only 1.5 times greater than that of the mechano-thermally synthesized one.
基金Project(8451063201001261) supported by the Guangdong Natural Science Fund Committee,ChinaProject(LYM08022) supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China+1 种基金Project (2007A032400001, 2008A030202010) supported by the Scientific and Technological Planning of Guangdong Province,ChinaProject(216113132) supported by the Scientific Research Cultivation and Innovation Fund, Jinan University,China
文摘The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2 ) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2 , which indicates the significance of O2 . The addition of NaN 3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.
基金supported by LiaoNing Revitalization Talents Pro-gram(XLYC2007166)Joint Funds for Innovation Capability Improve-ment of Natural Science Foundation of Liaoning Province(2021-NLTS-12-08)+1 种基金the Key Task and Local Project in Science&Technology of SYUCT(LDB2019004)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2021018).
文摘The plasmonic Ag nanoparticles(NPs)loaded g-C_(3)N_(4)photocatalysts(Ag/C_(3)N_(4))were successfully prepared via a conventional procedure.The fully characterized Ag/C_(3)N_(4)photocatalysts exhibited excellent stability and greatly enhanced visible light-driven photocatalytic performance both in the degradation of methyl orange(MO)and H_(2)evolution from water splitting.The 1.0 wt%Ag/C_(3)N_(4)allowed the highest reaction rate of 0.0294 min^(−1)to be obtained in the MO degradation,which is about 2.3 times higher than the reaction rate of g-C_(3)N_(4)alone of 0.0129 min^(−1).Furthermore,the optimum H_(2)evolution and the k value attained 20μmol and 1.573 h^(−1),respectively,after 12 h of visible light irradiation.The surface plasmon resonance effect of Ag NPs and the charge transfer between the two components of the photocatalyst,strongly promote generation of photoinduced charge carriers while suppressing their recombination.These factors are held responsible for the enhanced visible light photocatalytic performance of Ag/C_(3)N_(4).Our methodology will provide guidance for the design and synthesis of plasmon-enhanced visible light photocatalysts derived from Ag NPs and g-C_(3)N_(4)and their applications in environmental remediation and green energy development.
文摘The dye-sensitized TiO2 method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO2 under visible light irradiation (λ > 400 nm) has been evaluated. Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of 5 mg/L of initial concentration of OII and RhB at room temperature. The trapping effects of different scavengers results proved that the oxidation of OII and RhB mainly occurred by the direct oxidization of h+ and ·O2- radicals, while the ·OH radicals played only a relatively minor role in the direct oxidization process.
基金supported by Teamwork Project Funded by Guangdong Natural Science Foundation(S2013030012842)~~
文摘particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization.
基金supported by the National Natural Science Foundation of China(21171174)Provincial Natural Science Foundation of Hunan(09JJ3024)Provincial Environmental Science and Technology Foundation of Hunan~~
文摘A novel visible-light-responding InVO4-Cu2O-TiO2 ternary nanoheterostructure was designed on the basis of the strategy of energy gap engineering and prepared through ordinary wet chemistry methods. The as-prepared nanoheterostructure was characterized by X-ray powder diffraction(XRD), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM) and diffuse reflectance ultraviolet-visible spectroscopy(UV-vis/DRS). The TEM and HRTEM images of 10%InVO4-40%Cu2O-50%TiO2 confirm the formation of nanoheterostructures resulting from contact of the nanosized TiO2, Cu2O and InVO4 in the size of 5–20 nm in diameter. The InVO4-Cu2O-TiO2 nanoheterostructure, when compared with TiO2, Cu2O, InVO4, InVO4-TiO2 and Cu2O-TiO2, shows significant enhancement in the photocatalytic performance for the degradation of methyl orange(MO) under visible-light irradiation. With a 9 W energy-saving fluorescent lamp as the visible-light source, the MO degradation rate of 10%InVO4-40%Cu2O-50%TiO2 reaches close to 90% during 5 h, and the photocatalytic efficiency is maintained at over 90% after six cycles. This may be mainly ascribed to the matched bandgap configurations of TiO2, Cu2O and InVO4, and the formations of two p-n junctions by the p-type semiconductor Cu2O with the n-type semiconductors TiO2 and InVO4, all of which favor spatial photogenerated charge carrier separation. The X-ray photoelectron spectroscopy(XPS) characterization for the used 10%InVO4-40%Cu2O-50%TiO2 reveals that only a small shakeup satellite peak appears for Cu(II) species, implying bearable photocorrosion of Cu2O. This work could provide new insight into the design and preparation of novel visible-light-responding semiconductor composites.
基金The National Natural Science Foundation of China (No.20371023)
文摘A new upconversion luminescence agent, 40CdF2·60BaF2·0.8ErO3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.21406184)the Foundation of Youth Science and Technology Innovation Team of Sichuan Province(Grant No.2015TD0007).
文摘The performance of Mn-TiO2/sepiolite photocatalysts prepared by the solgel method and calcinated at different temperatures was studied in the photocatalytic degradation of direct fast emerald green dye under visible light irradiation,and a series of analytical techniques such as XRD,SEM,FTIR,TG-DSC,XPS,UV-vis-DRS and Raman spectroscopy were used to characterize the morphology,structure and optical properties of the photocatalysts.It is found that the anatase TiO2 was formed in all photocatalysts.Mn4+might incorporate into the lattice structure of TiO2 and partially replace Ti4+,thus causing the defects in the crystal structure and the broadening of the spectral response range of TiO2.At the same time,TiO2 particles were dispersed on the surface of the sepiolite,which immobilized TiO2 particles with sepiolite via the bond of Ti-O-Si.Mn-TiO2/sepiolite calcined at 400°C exhibits the highest photocatalytic activity and the degradation rate of direct fast emerald green is up to 98.13%.Meanwhile,it also shows good stability and universality.
基金the National Natural Science Foundation of China(No.51801235,No.11875258,No.11505187,No.51374255,No.51802356,No.51572299,and No.41701359)the Innovation-Driven Project of Central South University(No.2018CX004)+4 种基金the Start-up Funding of Central South University(No.502045005)the Fundamental Research Funds for the Central Universities(No.WK2310000066,No.WK2060190081)Posdoctoral Science Foundation of China(No.2019M652797)Central South University Postdoctoral Research Opening Fundthe Fundamental Research Funds for the Central Universities of Central South University(No.2018zzts402)。
文摘Photocatalytic degradation of organic pollutants has become a hot research topic because of its low energy consumption and environmental-friendly characteristics.Bismuth oxide(Bi2O3)nanocrystals with a bandgap ranging from 2.0 eV to 2.8 eV have attracted increasing attention due to high activity of photodegradation of organic pollutants by utilizing visible light.Though several methods have been developed to prepare Bi2O3-based semiconductor materials over recent years,it is still difficult to prepare highly active Bi2O3 catalysts in large scale with a simple method.Therefore,developing simple and feasible methods for the preparation of Bi2O3 nanocrystals in large scale is important for the potential applications in industrial wastewater treatment.In this work,we successfully prepared porous Bi2O3 in large scale via etching commercial Bi Sn powders,followed by thermal treatment with air.The acquired porous Bi2O3 exhibited excellent activity and stability in photocatalytic degradation of methylene blue.Further investigation of the mechanism witnessed that the suitable band structure of porous Bi2O3 allowed the generation of reactive oxygen species,such as O2^-·and·OH,which effectively degraded MB.
文摘Noble metal Ag nanoparticles with unique surface plasmon resonance property have attracted much attention recently in the field of photocatalysis. Based on the advantages of Ag nanoparticles and semiconductor CeO2, a novel plasmonic photocatalyst Ag-AgCl/CeO2 was prepared with a facile route. The as-prepared samples were characterized using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffusion re?ection spectroscopy. This metal-semiconductor nanocomposite plasmonic photocatalyst exhibited a high visible-light photocatalytic activity and good stability for photocatalytic degradation of methyl orange in water. Ag-AgCl/CeO2 will be a potentially promising plasmonic photocatalysts for organic pollutant degradation and water purification.
基金This work wassupported by the Natural Science Foundation Council of China (No.20271007 and 20331010)and Specialized Research Fund for the Doctoral Program of Higher Education (No.20030007014)
文摘A strategy of intensifying the visible light harvesting ability of anatase Ti02 hollow spheres(HSs)was developed,in which both sides of Ti02 HSs were utilised for stabilising Au nanoparticles(NPs)through the sacrificial templating method and convex surface-induced confinement.The composite structure of single Au NP yolk-Ti02 shell-Au NPs,denoted as Au@Au(Ti02,was rendered and confirmed by the transmission electron microscopy analysis.Au@Au(Ti02 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(Ti02 by 77%and Au@P25 by 52%,respectively,in phenol degradation.
基金supported by the NSFC(Nos.21677047 and U1604137)the Innovation Scientists and Technicians Troop Construction Projects,the Research Start-up Foundation(No.5101219170107)+3 种基金the Youth Science Foundation(No.2015QK29)of Henan Normal University for the Ph Dthe Key Scientific and Technological Projects in Henan Province(No.132102210129)research fund from Henan Normal University(Nos.5101039170157 and 5101039170304)Postdoctoral Science Foundation of Henan Province(No.5201029470213)。
文摘The graphic carbon nitride/polyaniline(g-C_(3)N_(4)/PANI)hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath.The photocatalytic activities of the g-C_(3)N_(4)/PANI composites were evaluated by using oxytetracycline(OTC)as model pollutants.The optimal g-C_(3)N_(4)/PANI composite(5%PANI:the g-C_(3)N_(4)/PANI hybrid with 5 wt.%of PANI)showed an enhancement degradation rate of 5-fold compared to that of conventional g-C_(3)N_(4)under simulated-sunlight irradiation.In addition,the 5%PANI demonstrate significantly photocatalytic evolution H_(2)rate(163.2μmol/(g·hr))under the visible light irradiation.Furthermore,based on the results of optical performance and electrochemical testing,a possible mechanism was proposed,indicating that the incorporation of PANI into the traditional g-C_(3)N_(4)can effectively tune the electronic structures,improve the photo-generated electrons-holes separation and enhance extensive absorption of visible light.Such a g-C_(3)N_(4)/PANI hybrid nanocomposites could be envisaged to possess great potentials in practical wastewater treatment and water splitting.
基金This work was supported by National Key Research and Development Program of China(No.2018YFC1803100)National Natural Science Foundation of China(No.21777116)the Fundamental Research Funds for the Central Universities.
文摘Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance.In this study,we report a sol-gel synthesis approach to obtain non-metal doped TiO_(2)with sponge-like structure and surface-phase junctions all at once.While doping of carbon and nitrogen shifted the activation wavelength to the visible-light region,the innovative use of perchloric acid as a pore-making agent led to the formation of three-dimensional lamellar and porous structure with surface-phase junctions.High surface area with catalytic active sites rendered by the sponge-like structure and surface-phase junctions contributed to the much improved photocatalytic degradation efficiency toward rhodamine B,tetracycline and Disperse Red 60 with excellent reusability and stability.The improved gen eration and separati on efficie ncy of the photo-induced charge carriers of the as-prepared TiO_(2)were supported by electrochemical impedance measurements and transient photocurrent responses.This method could also be applied to other photocatalysts to achieve structural alteration and element doping simultaneously.
基金supported by the National Key Research and Development Program(No.2019YFC1803903)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07Z479)+1 种基金China Postdoctoral Science Foundation(No.2021M701561)the National Natural Science Foundation of China(No.42007318)。
文摘Environmental photocatalysis is a promising technology for treating antibiotics in wastewater.In this study,a supercritical carbonization method was developed to synthesize a single-atom photocatalyst with a high loading of Ni(above 5 wt.%)anchored on a carbonnitrogen-silicate substrate for the efficient photodegradation of a ubiquitous environmental contaminant of tetracycline(TC).The photocatalyst was prepared from an easily obtained metal-biopolymer-inorganic supramolecular hydrogel,followed by supercritical drying and carbonization treatment.The low-temperature(300℃)supercritical ethanol treatment prevents the excessive structural degradation of hydrogel and greatly reduces the metal clustering and aggregation,which contributed to the high Ni loading.Atomic characterizations confirmed that Ni was present at isolated sites and stabilized by Ni-N and Ni-O bonds in a Ni-(N/O)_(6)-C/SiC configuration.A 5%Ni-C-Si catalyst,which performed the best among the studied catalysts,exhibited a wide visible light response with a narrow bandgap of 1.45 eV that could efficiently and repeatedly catalyze the oxidation of TC with a conversion rate of almost 100% within 40 min.The reactive species trapping experiments and electron spin resonance(ESR)tests demonstrated that the h+,and·O_(2)-were mainly responsible for TC degradation.The TC degradation mechanism and possible reaction pathways were provided also.Overall,this study proposed a novel strategy to synthesize a high metal loading singleatom photocatalyst that can efficiently remove TC with high concentrations,and this strategy might be extended for synthesis of other carbon-based single-atom catalysts with valuable properties.