期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Learning Deep RGBT Representations for Robust Person Re-identification 被引量:1
1
作者 Ai-Hua Zheng Zi-Han Chen +2 位作者 Cheng-Long Li Jin Tang Bin Luo 《International Journal of Automation and computing》 EI CSCD 2021年第3期443-456,共14页
Person re-identification(Re-ID)is the scientific task of finding specific person images of a person in a non-overlapping camera networks,and has achieved many breakthroughs recently.However,it remains very challenging... Person re-identification(Re-ID)is the scientific task of finding specific person images of a person in a non-overlapping camera networks,and has achieved many breakthroughs recently.However,it remains very challenging in adverse environmental conditions,especially in dark areas or at nighttime due to the imaging limitations of a single visible light source.To handle this problem,we propose a novel deep red green blue(RGB)-thermal(RGBT)representation learning framework for a single modality RGB person ReID.Due to the lack of thermal data in prevalent RGB Re-ID datasets,we propose to use the generative adversarial network to translate labeled RGB images of person to thermal infrared ones,trained on existing RGBT datasets.The labeled RGB images and the synthetic thermal images make up a labeled RGBT training set,and we propose a cross-modal attention network to learn effective RGBT representations for person Re-ID in day and night by leveraging the complementary advantages of RGB and thermal modalities.Extensive experiments on Market1501,CUHK03 and Duke MTMC-re ID datasets demonstrate the effectiveness of our method,which achieves stateof-the-art performance on all above person Re-ID datasets. 展开更多
关键词 person re-identification(Re-ID) thermal infrared generative networks ATTENTION deep learning
原文传递
基于全局多粒度池化的可见光红外行人重识别 被引量:4
2
作者 周航 黄春光 程海 《电子测量技术》 北大核心 2022年第1期122-128,共7页
可见光红外行人重新识别是一种跨模态检索的问题。由于可见光和红外图像模态差异较大,能够精确的匹配行人仍然具有很大的挑战。最近的研究表明,利用池化描述身体部位的局部特征以及人图像本身的全局特征,即使在身体部位缺失的情况下,也... 可见光红外行人重新识别是一种跨模态检索的问题。由于可见光和红外图像模态差异较大,能够精确的匹配行人仍然具有很大的挑战。最近的研究表明,利用池化描述身体部位的局部特征以及人图像本身的全局特征,即使在身体部位缺失的情况下,也能给出鲁棒的特征表示,但是简单的全局平均池化很难获取行人的细节特征。针对这个问题,提出一种新的全局多粒度池化的方法,利用全局平均池化和全局最大池化结合的方法,提取行人更多的背景和纹理信息。此外,传统的三元组损失在跨模态行人重识别上效果并不好。设计了一种新的跨模态三元损失,以优化类内和类间距离,并监督网络学习有区别的特征表示。通过实验证明了所提方法的有效性,并在RegDB和SYSU-MM01数据集上分别取得了88.01%Rank-1,79.26%mAP,和60.24%Rank-1,57.50%mAP的结果。 展开更多
关键词 全局多粒度池化 可见光红外行人重识别 困难跨模态三元损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部