Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p...Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.展开更多
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor...Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.展开更多
Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also...Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system w...To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.展开更多
Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This pap...Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and prov...BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.展开更多
Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded or...Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn s...Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.展开更多
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har...Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.展开更多
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in...Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.展开更多
Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl Ri...Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.展开更多
A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by t...A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.展开更多
The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spe...The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
文摘Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.
文摘Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.
文摘Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by the National MCF Energy R&D Program of China (Nos. 2018YFE0302103 and 2018YFE 0302100)National Natural Science Foundation of China (Nos. 12205195 and 11975277)。
文摘To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61975072 and 12174173)the Natural Science Foundation of Fujian Province,China (Grant Nos.2022H0023,2022J02047,ZZ2023J20,and 2022G02006)。
文摘Real-time,contact-free temperature monitoring of low to medium range(30℃-150℃)has been extensively used in industry and agriculture,which is usually realized by costly infrared temperature detection methods.This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network(CNN).A mean-square error of<1.119℃was reached in the temperature measurements of low to medium range using the CNN and the visible light images.Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN.Moreover,the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training.Compared to the conventional machine learning algorithms mentioned in the recent literatures,this real-time,contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金Supported by The Southwest Medical University Student Innovation and Entrepreneurship Project Fund,No.202310632045 and No.202310632059。
文摘BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.
基金support from the Scientific and Technological Bases and Talents of Guangxi(Guike AD21238027)support from Doctoral and master's degree innovation projects+1 种基金T.Liu thanks the Training Project of High-level Professional and Technical Talents of Guangxi University and Natural Science and Technology Innovation Development Multiplication Program of Guangxi University(2022BZRC006)D.Xue thanks the support from International(regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(52220105010).
文摘Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
基金Supported by San Heng San Zong Project of Heilongjiang Bayi Agricultural University(ZRCPY202314).
文摘Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.
基金supported by the National Natural Science Foundation of China(No.61772386)National Key Research and Development Project(No.2018YFB1305001)Fundamental Research Funds for the Central Universities(No.KJ02072021-0119).
文摘Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results.
文摘Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.
文摘Using visible and near-infrared (Vis-NIR) spectroscopy combined with partial least squares (PLS) regression, the rapid reagent-free analysis model for chromium (Cr) content in tideland reclamation soil in the Pearl River Delta, China was established. Based on Savitzky-Golay (SG) smoothing and PLS regression, a multi-parameters optimization platform (SG-PLS) covering 264 modes was constructed to select the appropriately spectral preprocessing mode. The optimal SG-PLS model was determined according to the prediction effect. The selected optimal parameters <em>d, p, m</em> and LV were 2, 6, 23 and 8, respectively. Using the validation samples that were not involved in modeling, the root mean square error (SEP<sub>V</sub>), relative root mean square error (R-SEP<sub>V</sub>) and correlation coefficients (R<sub>P, V</sub>) of prediction were 11.66 mg<span style="white-space:nowrap;">·</span>kg<sup>-1</sup>, 10.7% and 0.722, respectively. The results indicated that the feasibility of using Vis-NIR spectroscopy combined with SG-PLS method to analyze soil Cr content. The constructed multi-parameters optimization platform with SG-PLS is expected to be applied to a wider field of analysis. The rapid detection method has important application values to large-scale agricultural production.
基金supported by the National Science Foundation of China(No.11204298,61205025,61274126 and 61306081)the Jilin Province Science and Technology Research Project(No.20140101060JC,20150519003JH and 20130522142JH)the Outstanding Young Scientist Program of CAS.
文摘A novel concept and approach to engineering carbon nanodots(CNDs)were explored to overcome the limited light absorption of CNDs in low-energy spectral regions.In this work,we constructed a novel type of supra-CND by the assembly of surface charge-confined CNDs through possible electrostatic interactions and hydrogen bonding.The resulting supra-CNDs are the first to feature a strong,well-defined absorption band in the visible to near-infrared(NIR)range and to exhibit effective NIR photothermal conversion performance with high photothermal conversion efficiency in excess of 50%.
文摘The identification of soy sauce adulteration can avoid fraud, and protect the rights and interests of producers and consumers. Based on two measurement models (1 mm, 10 mm), the visible and near-infrared (Vis-NIR) spectroscopy combined with standard normal variate-partial least squares-discriminant analysis (SNV-PLS-DA) was used to establish the discriminant analysis models for adulterated and brewed soy sauces. Chubang soy sauce was selected as an identification brand (negative, 70). The adulteration samples (positive, 72) were prepared by mixing Chubang soy sauce and blended soy sauce with different adulteration rates. Among them, the “blended soy sauce” sample was concocted of salt water (NaCl), monosodium glutamate (C<sub>5</sub>H<sub>10</sub>NNaO<sub>5</sub>) and caramel color (C<sub>6</sub>H<sub>8</sub>O<sub>3</sub>). The rigorous calibration-prediction-validation sample design was adopted. For the case of 1 mm, five waveband models (visible, short-NIR, long-NIR, whole NIR and whole scanning regions) were established respectively;in the case of 10 mm, three waveband models (visible, short-NIR and visible-short-NIR regions) for unsaturated absorption were also established respectively. In independent validation, the models of all wavebands in the cases of 1 mm and 10 mm have achieved good discrimination effects. For the case of 1 mm, the visible model achieved the optimal validation effect, the validation recognition-accuracy rate (RAR<sub>V</sub>) was 99.6%;while in the case of 10 mm, both the visible and visible-short-NIR models achieved the optimal validation effect (RAR<sub>V</sub> = 100%). The detection method does not require reagents and is fast and simple, which is easy to promote the application. The results can provide valuable reference for designing small dedicated spectrometers with different measurement modals and different spectral regions.