Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the cont...Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the control of herds of cattle, based on polygon coordinate definition of boundaries is limited in the area of land mass coverage and dynamism. This work seeks to develop a more robust and an improved monocular vision based boundary avoidance for non-invasive stray control system for cattle, with a view to increase land mass coverage in virtual fencing techniques and dynamism. The monocular vision based depth estimation will be modeled using concept of global Fourier Transform (FT) and local Wavelet Transform (WT) of image structure of scenes (boundaries). The magnitude of the global Fourier Transform gives the dominant orientations and textual patterns of the image;while the local Wavelet Transform gives the dominant spectral features of the image and their spatial distribution. Each scene picture or image is defined by features v, which contain the set of global (FT) and local (WT) statistics of the image. Scenes or boundaries distances are given by estimating the depth D by means of the image features v. Sound cues of intensity equivalent to the magnitude of the depth D are applied to the animal ears as stimuli. This brings about the desired control as animals tend to move away from uncomfortable sounds.展开更多
A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ...A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.展开更多
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision...In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.展开更多
A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and...A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and terminative positions of deformation were dynamically identified during dieless drawing, and the global monitoring and online closed-loop control of the deformation zone were achieved. The dieless drawing process was systematically carried out on NiTi shape memory alloy wires. It is shown that the deformation measurement method of interframe displacement can track the axial displacement of the wires, but this cannot be achieved by traditional machine vision. The initial and terminative positions of deformation can be accurately identified by this method. The proposed rectifying control technology can effectively decrease the wire diameter fluctuation during dieless drawing, that is, the standard deviation of the wire diameter fluctuation could be decreased fi'om 0.30 to 0.08 mm after three passes of dieless drawing, indicating that the control system has a good rectifying ability.展开更多
In the test-field calibration,multi-azimuth stereo image pairs areproduced of the outdoor large control-field by the stereo-vision system under cali-bration.While in the analytical processing,the relationship between ...In the test-field calibration,multi-azimuth stereo image pairs areproduced of the outdoor large control-field by the stereo-vision system under cali-bration.While in the analytical processing,the relationship between image pairsis adopted as a constraint condition,which ensures the stability and quality of thecalibration results.This paper introduces the deduction process of the constraintconditions.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿...目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿真控制模块,采用倍福自动化设备规范(automation device specification,ADS)通信技术和实时工业以太网总线技术(ethernet for control automation technology,EtherCAT),建立以计算机(personal computer,PC)和倍福控制器为EtherCAT主站,控制多组从站执行器的一主多从工作模式。该模式结合离线与在线控制、集成数字孪生技术,完成虚拟样机与物理样机的联动;采用开源可扩展架构,便于视觉算法、智能算法等算法集成。经实验验证,此架构具有拓展性好、实时性强的特点。展开更多
文摘Building fences to manage the cattle grazing can be very expensive;cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the control of herds of cattle, based on polygon coordinate definition of boundaries is limited in the area of land mass coverage and dynamism. This work seeks to develop a more robust and an improved monocular vision based boundary avoidance for non-invasive stray control system for cattle, with a view to increase land mass coverage in virtual fencing techniques and dynamism. The monocular vision based depth estimation will be modeled using concept of global Fourier Transform (FT) and local Wavelet Transform (WT) of image structure of scenes (boundaries). The magnitude of the global Fourier Transform gives the dominant orientations and textual patterns of the image;while the local Wavelet Transform gives the dominant spectral features of the image and their spatial distribution. Each scene picture or image is defined by features v, which contain the set of global (FT) and local (WT) statistics of the image. Scenes or boundaries distances are given by estimating the depth D by means of the image features v. Sound cues of intensity equivalent to the magnitude of the depth D are applied to the animal ears as stimuli. This brings about the desired control as animals tend to move away from uncomfortable sounds.
基金This project was supported by the research foundation of China Education Ministry for the scholars from abroad (2002247).
文摘A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.
文摘In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.
基金financially supported by the National Basic Research Priorities Program of China (No.2011CB606300)the National Natural Science Foundation of China (Nos.50634010 and 50674008)+1 种基金the Program for New Century Excellent Talents in Chinese Universities(No.NCET-06-0083)the Universities Fundamental Research Foundation of the Ministry of Education, China (No.FRF-TP-10-002B)
文摘A deformation measurement method of interframe displacement was proposed in this paper. By online monitoring the shape di- mensions of both the deformation zone and its adjacent zone by machine vision, the initial and terminative positions of deformation were dynamically identified during dieless drawing, and the global monitoring and online closed-loop control of the deformation zone were achieved. The dieless drawing process was systematically carried out on NiTi shape memory alloy wires. It is shown that the deformation measurement method of interframe displacement can track the axial displacement of the wires, but this cannot be achieved by traditional machine vision. The initial and terminative positions of deformation can be accurately identified by this method. The proposed rectifying control technology can effectively decrease the wire diameter fluctuation during dieless drawing, that is, the standard deviation of the wire diameter fluctuation could be decreased fi'om 0.30 to 0.08 mm after three passes of dieless drawing, indicating that the control system has a good rectifying ability.
文摘In the test-field calibration,multi-azimuth stereo image pairs areproduced of the outdoor large control-field by the stereo-vision system under cali-bration.While in the analytical processing,the relationship between image pairsis adopted as a constraint condition,which ensures the stability and quality of thecalibration results.This paper introduces the deduction process of the constraintconditions.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.
文摘目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿真控制模块,采用倍福自动化设备规范(automation device specification,ADS)通信技术和实时工业以太网总线技术(ethernet for control automation technology,EtherCAT),建立以计算机(personal computer,PC)和倍福控制器为EtherCAT主站,控制多组从站执行器的一主多从工作模式。该模式结合离线与在线控制、集成数字孪生技术,完成虚拟样机与物理样机的联动;采用开源可扩展架构,便于视觉算法、智能算法等算法集成。经实验验证,此架构具有拓展性好、实时性强的特点。