Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:1...Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.展开更多
There has been growing concern about energy consumption and environmental impact of datacenters. Some pioneers begin to power datacenters with renewable energy to offset carbon footprint. However, it is challenging to...There has been growing concern about energy consumption and environmental impact of datacenters. Some pioneers begin to power datacenters with renewable energy to offset carbon footprint. However, it is challenging to integrate intermittent renewable energy into datacenter power system. Grid-tied system is widely deployed in renewable energy powered datacenters. But the drawbacks (e.g. Harmonic dis- turbance and costliness) of grid tie inverter harass this design. Besides, the mixture of green load and brown load makes power management heavily depend on software measurement and monitoring, which often suffers inaccuracy. We propose DualPower, a novel power provisioning architecture that en- ables green datacenters to integrate renewable power supply without grid tie inverters. To optimize DualPower operation, we propose a specially designed power management frame- work to coordinate workload balancing with power supply switching. We evaluate three optimization schemes (LM, PS and JO) under different datacenter operation scenarios on our trace-driven simulation platform. The experimental results show that DualPower can be as efficient as grid-tied system and has good scalability. In contrast to previous works, Du- alPower integrates renewable power at lower cost and main- tains full availability of datacenter servers.展开更多
文摘Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.
基金This work was supported by 863 Program of China (2012AA010902), the National Natural Science Foundation of China (Grant Nos. 61202425, 61133004 and 61361126011), State Key Laboratory of Soft- ware Development Environment (SKLSDE-2013ZX-22), and the Funda- mental Research Funds for the Central Universities.
文摘There has been growing concern about energy consumption and environmental impact of datacenters. Some pioneers begin to power datacenters with renewable energy to offset carbon footprint. However, it is challenging to integrate intermittent renewable energy into datacenter power system. Grid-tied system is widely deployed in renewable energy powered datacenters. But the drawbacks (e.g. Harmonic dis- turbance and costliness) of grid tie inverter harass this design. Besides, the mixture of green load and brown load makes power management heavily depend on software measurement and monitoring, which often suffers inaccuracy. We propose DualPower, a novel power provisioning architecture that en- ables green datacenters to integrate renewable power supply without grid tie inverters. To optimize DualPower operation, we propose a specially designed power management frame- work to coordinate workload balancing with power supply switching. We evaluate three optimization schemes (LM, PS and JO) under different datacenter operation scenarios on our trace-driven simulation platform. The experimental results show that DualPower can be as efficient as grid-tied system and has good scalability. In contrast to previous works, Du- alPower integrates renewable power at lower cost and main- tains full availability of datacenter servers.