We present an algorithm which can realize mobile robot in unknown outdoor environments, which 3D stereo vision simultaneous localization and mapping (SLAM) for means the 6-DOF motion and a sparse but persistent map ...We present an algorithm which can realize mobile robot in unknown outdoor environments, which 3D stereo vision simultaneous localization and mapping (SLAM) for means the 6-DOF motion and a sparse but persistent map of natural landmarks be constructed online only with a stereo camera. In mobile robotics research, we extend FastSLAM 2.0 like stereo vision SLAM with "pure vision" domain to outdoor environments. Unlike popular stochastic motion model used in conventional monocular vision SLAM, we utilize the ideas of structure from motion (SFM) for initial motion estimation, which is more suitable for the robot moving in large-scale outdoor, and textured environments. SIFT features are used as natural landmarks, and its 3D positions are constructed directly through triangulation. Considering the computational complexity and memory consumption, Bkd-tree and Best-Bin-First (BBF) search strategy are utilized for SIFT feature descriptor matching. Results show high accuracy of our algorithm, even in the circumstance of large translation and large rotation movements.展开更多
针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能...针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。展开更多
同时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人导航的一个重要研究方向。视觉SLAM是一种使用相机作为主要信息来源的SLAM技术。与较为成熟的基于激光测距的SLAM相比,视觉SLAM还有许多问题亟待研究...同时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人导航的一个重要研究方向。视觉SLAM是一种使用相机作为主要信息来源的SLAM技术。与较为成熟的基于激光测距的SLAM相比,视觉SLAM还有许多问题亟待研究解决。近年来,随着人工智能、机器学习、图像处理技术、云计算、5G通信技术的发展,计算机视觉的相关算法能够在终端设备实时运行,视觉SLAM研究也受到越来越多的关注。本文介绍了视觉SLAM的原理及一些经典的实现方法,概述了视觉SLAM的最新研究进展,对视觉SLAM在实际应用中存在的一些问题进行了讨论。展开更多
移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据...移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60534070 and 60505017)the Science PlanningProject of Zhejiang Province (No. 2005C14008), China
文摘We present an algorithm which can realize mobile robot in unknown outdoor environments, which 3D stereo vision simultaneous localization and mapping (SLAM) for means the 6-DOF motion and a sparse but persistent map of natural landmarks be constructed online only with a stereo camera. In mobile robotics research, we extend FastSLAM 2.0 like stereo vision SLAM with "pure vision" domain to outdoor environments. Unlike popular stochastic motion model used in conventional monocular vision SLAM, we utilize the ideas of structure from motion (SFM) for initial motion estimation, which is more suitable for the robot moving in large-scale outdoor, and textured environments. SIFT features are used as natural landmarks, and its 3D positions are constructed directly through triangulation. Considering the computational complexity and memory consumption, Bkd-tree and Best-Bin-First (BBF) search strategy are utilized for SIFT feature descriptor matching. Results show high accuracy of our algorithm, even in the circumstance of large translation and large rotation movements.
文摘针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人导航的一个重要研究方向。视觉SLAM是一种使用相机作为主要信息来源的SLAM技术。与较为成熟的基于激光测距的SLAM相比,视觉SLAM还有许多问题亟待研究解决。近年来,随着人工智能、机器学习、图像处理技术、云计算、5G通信技术的发展,计算机视觉的相关算法能够在终端设备实时运行,视觉SLAM研究也受到越来越多的关注。本文介绍了视觉SLAM的原理及一些经典的实现方法,概述了视觉SLAM的最新研究进展,对视觉SLAM在实际应用中存在的一些问题进行了讨论。
文摘移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。