Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve th...Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed.展开更多
载体定位是实现自动驾驶的关键技术之一,其中基于地图的定位技术具有精度高和鲁棒性强的优点。同步定位与建图(simultaneous localization and mapping,SLAM)技术是针对未知环境地图构建的典型方法,在地铁隧道场景中,传统SLAM算法易因...载体定位是实现自动驾驶的关键技术之一,其中基于地图的定位技术具有精度高和鲁棒性强的优点。同步定位与建图(simultaneous localization and mapping,SLAM)技术是针对未知环境地图构建的典型方法,在地铁隧道场景中,传统SLAM算法易因几何结构的严重退化而导致建图失败。针对此问题,文章提出一种基于点云强度特征的建图算法。其首先进行基于点云强度的特征点云提取,并根据广义迭代最近点算法完成高强度特征点云残差构建,以增加运动约束;其次,基于位姿图优化融合激光雷达数据与惯性测量单元数据,完成位姿优化与地图构建;最后,使用地铁隧道离线数据进行算法验证,结果显示,采用该方法成功构建了地铁全线的点云地图,地图无明显漂移,并采用隧道壁上固定安装距离的标识物体进行地图精度评估,所建地图平均偏差小于0.2m,验证了所提算法的有效性与鲁棒性。展开更多
针对特征法视觉同步定位与地图构建(simultaneous localization and mapping,SLAM)耗时久、纹理缺失场景易跟踪失败而只能重建稀疏点云的问题,提出一种基于半直接视觉里程计的SLAM稠密重建算法。该算法以ORB-SLAM2框架为基础,视觉里程...针对特征法视觉同步定位与地图构建(simultaneous localization and mapping,SLAM)耗时久、纹理缺失场景易跟踪失败而只能重建稀疏点云的问题,提出一种基于半直接视觉里程计的SLAM稠密重建算法。该算法以ORB-SLAM2框架为基础,视觉里程计采用直接法最小化光度误差求解相机初始位姿,采用特征法最小化重投影误差优化位姿,提高相机位姿的输出频率;以一种冗余关键帧删除算法计算帧间相对运动距离,删除视野重叠的关键帧;使用筛选后的关键帧进行闭环检测,构建稠密点云地图,滤波后转换为存储效率更高的八叉树地图。结果表明,所提算法能有效解决相机快速运动场景和纹理缺失场景跟踪失败的问题,实现三维地图重建,具有较高的定位精度与实时性。展开更多
目前,视觉机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的建图部分主要采用了三维八叉树地图,虽然其地图存储容量较大,但是地图范围却无法实时扩大,且室内场景中常见的动态事物也因为忽略了大噪声点而...目前,视觉机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的建图部分主要采用了三维八叉树地图,虽然其地图存储容量较大,但是地图范围却无法实时扩大,且室内场景中常见的动态事物也因为忽略了大噪声点而难以进行处理.为此提出一种新的基于生长型四叉树结构的实时网格二维地图构建方法,将三维体素地图降维为二维网格地图,增加了对动态特征点轨迹的预测,在无损三维空间信息的情况下丰富了导航地图携带的环境信息.真实室内场景的实验表明:该算法能够在地图中较为精确地显示障碍物的位置信息,显著地降低了地图存储空间,提高了建图速度.展开更多
基金supported by the National Key Research and Development Program(No.2022YFD2001704).
文摘Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed.
文摘载体定位是实现自动驾驶的关键技术之一,其中基于地图的定位技术具有精度高和鲁棒性强的优点。同步定位与建图(simultaneous localization and mapping,SLAM)技术是针对未知环境地图构建的典型方法,在地铁隧道场景中,传统SLAM算法易因几何结构的严重退化而导致建图失败。针对此问题,文章提出一种基于点云强度特征的建图算法。其首先进行基于点云强度的特征点云提取,并根据广义迭代最近点算法完成高强度特征点云残差构建,以增加运动约束;其次,基于位姿图优化融合激光雷达数据与惯性测量单元数据,完成位姿优化与地图构建;最后,使用地铁隧道离线数据进行算法验证,结果显示,采用该方法成功构建了地铁全线的点云地图,地图无明显漂移,并采用隧道壁上固定安装距离的标识物体进行地图精度评估,所建地图平均偏差小于0.2m,验证了所提算法的有效性与鲁棒性。
文摘针对特征法视觉同步定位与地图构建(simultaneous localization and mapping,SLAM)耗时久、纹理缺失场景易跟踪失败而只能重建稀疏点云的问题,提出一种基于半直接视觉里程计的SLAM稠密重建算法。该算法以ORB-SLAM2框架为基础,视觉里程计采用直接法最小化光度误差求解相机初始位姿,采用特征法最小化重投影误差优化位姿,提高相机位姿的输出频率;以一种冗余关键帧删除算法计算帧间相对运动距离,删除视野重叠的关键帧;使用筛选后的关键帧进行闭环检测,构建稠密点云地图,滤波后转换为存储效率更高的八叉树地图。结果表明,所提算法能有效解决相机快速运动场景和纹理缺失场景跟踪失败的问题,实现三维地图重建,具有较高的定位精度与实时性。
文摘目前,视觉机器人的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)算法的建图部分主要采用了三维八叉树地图,虽然其地图存储容量较大,但是地图范围却无法实时扩大,且室内场景中常见的动态事物也因为忽略了大噪声点而难以进行处理.为此提出一种新的基于生长型四叉树结构的实时网格二维地图构建方法,将三维体素地图降维为二维网格地图,增加了对动态特征点轨迹的预测,在无损三维空间信息的情况下丰富了导航地图携带的环境信息.真实室内场景的实验表明:该算法能够在地图中较为精确地显示障碍物的位置信息,显著地降低了地图存储空间,提高了建图速度.
文摘工程机械工况复杂、作业环境恶劣,实现工程机械无人驾驶将带来显著的社会效益和经济价值。工程机械不同于普通乘用车,为实现无人驾驶工程机械在多复杂工况下的高鲁棒性定位,采用多传感器紧耦合的同步定位与建图系统(Simultaneous localization and mapping, SLAM)。针对现有SLAM前端算法计算冗余、计算效率低下等问题,采用基于点线、点面特征匹配的方法,结合局部地图配准,有效降低点云配准时的数据量,避免计算冗余。针对现有激光融合SLAM无回环检测的问题,基于空间近邻原则结合正态分布变换算法将回环检测机制引入SLAM系统,有效降低SLAM系统建图的全局误差。针对工程机械作业环境定位与建图易退化的问题,在点线、点面特征匹配的基础上,创立了残差自适应反馈机制,使得迭代方程求解快速收敛而不发散。仿真和实车试验结果证明该套SLAM系统能够有效解决工程机械在桥梁、长廊等作业场景下的建图退化问题,建图速度大大提高,能够满足工程机械实时定位与建图的需求。