微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道...微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道控制方案比单通道有较大的控制范围和较好的性能,但对系统的运算能力有较高的要求。文章以多通道FxLMS算法为基础,对多通道降噪系统的运算量进行了分析,依据国产DSP开发板的电路结构,设计了控制系统方案,并进行了实验研究。实验表明,所设计的噪声控制系统运算效率较ARM作为运算器提高了80%,对100~1 000 Hz内的周期性噪声信号衰减达到15~20 dB,证明了该方案的正确性。展开更多
Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception...Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.展开更多
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on het...Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.展开更多
基金supported by National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005)+2 种基金in part by the CNPC Innovation Fund(2021D002-0902)Fundamental Research Funds for the Central Universities and Shanghai AI Labsponsored by Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development。
文摘Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.
基金supported in part by the National Natural Science Foundation of China(62302161,62303361)the Postdoctoral Innovative Talent Support Program of China(BX20230114)。
文摘Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.