期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
基于图优化的GNSS/双目视觉/惯性SLAM系统开发及应用
1
作者 夏琳琳 宋梓维 +1 位作者 方亮 孙伍虹志 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期475-483,共9页
为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度... 为提高机器人室外长航时定位精度,提出一种基于图优化的全球导航卫星系统(GNSS)/双目视觉/惯性同时定位与建图(SLAM)系统开发及应用。将空间中的线特征作为几何约束的补充,集成至前端的特征提取及后端的位姿优化线程,提升位姿解算精度。同时,以因子图构建联合优化的图结构,并推导出全局观测误差模型。近200 m的BullDog-CX机器人巡检结果表明,所提算法相比于VINSFusion和PL-VINS分别取得约12.6%及3.4%的定位精度提升,为室外机器人长航时导航提供了一种可行方案。 展开更多
关键词 GNSS/双目视觉/惯性slam系统 图优化 线特征约束 全局观测 多传感器融合
下载PDF
动态场景下基于3D多目标追踪的实时视觉SLAM方法研究
2
作者 陈吉清 车宇翔 +2 位作者 田小强 兰凤崇 周云郊 《汽车工程》 EI CSCD 北大核心 2024年第5期776-783,共8页
近年来一些解决动态场景下的SLAM技术被提出,其中SLAM与MOT结合的技术路线不仅可解决动态场景问题,还可以提高系统对周围场景的理解,获得了更大关注。本文介绍了一种高效的实时在线视觉SLAMMOT融合系统,以双目视觉或RGBD作为输入,只须借... 近年来一些解决动态场景下的SLAM技术被提出,其中SLAM与MOT结合的技术路线不仅可解决动态场景问题,还可以提高系统对周围场景的理解,获得了更大关注。本文介绍了一种高效的实时在线视觉SLAMMOT融合系统,以双目视觉或RGBD作为输入,只须借助2D目标检测网络,便能高效、准确、鲁棒地跟踪相机以及动态目标的位姿,并生成稀疏点云地图。为提高多动态目标追踪的精度与准确度,引入了级联匹配与IOU匹配结合的策略;利用阿克曼转向模型来简化追踪目标的运动,减少求解动态目标位姿所需匹配点的数量;利用因子图将相机与动态目标的追踪结果进行联合优化,同时提高相机、追踪目标的位姿和地图点的精度。最后在KITTI跟踪数据集上与其他方法进行比较。结果表明,在满足实时性要求的前提下,该方法仍能准确地追踪相机以及动态目标位姿。 展开更多
关键词 视觉slam 动态场景 多目标追踪 实时系统
下载PDF
Visual SLAM Based on Object Detection Network:A Review
3
作者 Jiansheng Peng Dunhua Chen +3 位作者 Qing Yang Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期3209-3236,共28页
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ... Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development. 展开更多
关键词 Object detection visual slam visual odometry loop closure detection semantic map
下载PDF
多无人系统协同视觉SLAM算法 被引量:1
4
作者 魏强 张冬梅 范勇生 《载人航天》 CSCD 北大核心 2023年第1期29-35,共7页
针对传统同时定位与地图构建(SLAM)方法受计算能力、存储能力的限制无法在大范围场景下作业,无法建立大范围场景的全局一致性地图等问题,基于ORB-SLAM2系统框架建立了一种中心式的多无人系统协同视觉SLAM算法。设计了地图大小限制策略,... 针对传统同时定位与地图构建(SLAM)方法受计算能力、存储能力的限制无法在大范围场景下作业,无法建立大范围场景的全局一致性地图等问题,基于ORB-SLAM2系统框架建立了一种中心式的多无人系统协同视觉SLAM算法。设计了地图大小限制策略,以保证无人系统不受机载设备算力和存储能力的影响,基于字典机制和Sim3转换构建了地图融合优化算法,以完成全局地图构建与优化。最后进行了数据集测试,结果表明:所提出算法能够完成多无人系统协同SLAM,相对传统SLAM算法具有明显优势。 展开更多
关键词 视觉slam 无人系统协同 地图融合 状态估计
下载PDF
Visual SLAM in dynamic environments based on object detection 被引量:7
5
作者 Yong-bao Ai Ting Rui +4 位作者 Xiao-qiang Yang Jia-lin He Lei Fu Jian-bin Li Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1712-1721,共10页
A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on... A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes. 展开更多
关键词 visual slam Object detection Dynamic object probability model Dynamic environments
下载PDF
Collaborative visual SLAM for multiple agents:A brief survey 被引量:3
6
作者 Danping ZOU Ping TAN Wenxian YU 《Virtual Reality & Intelligent Hardware》 2019年第5期461-482,共22页
This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holdin... This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holding augmented or virtual reality devices. Such visual SLAM system, name as collaborative visual SLAM, is different from a typical visual SLAM deployed on a single agent in that information is exchanged or shared among different agents to achieve better robustness, efficiency, and accuracy. We review the representative works on this topic proposed in the past ten years and describe the key components involved in designing such a system including collaborative pose estimation and mapping tasks, as well as the emerging topic of decentralized architecture. We believe this brief survey could be helpful to someone who are working on this topic or developing multi-agent applications, particularly micro-aerial vehicle swarm or collaborative augmented/virtual reality. 展开更多
关键词 visual slam Multiple agent UAV swarm Collaborative AR/VR
下载PDF
Motion estimation based feature selection for visual SLAM
7
作者 孟旭炯 Jiang Rongxin Zhou Fan Chen Yaowu 《High Technology Letters》 EI CAS 2011年第4期433-438,共6页
Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of vi... Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of visible time, a new feature selection method based on motion estimation is proposed. First, a k-step iteration algorithm is presented for visible time estimation using an affme motion model; then a delayed feature detection method is introduced for efficiently detecting features with the maximum visible time. As a means of validation for the proposed method, both simulation and real data experiments are carded out. Results show that the proposed method can improve both the estimation performance and the computational performance compared with the existing random feature selection method. 展开更多
关键词 visual slam feature selection motion estimation computational efficiency CONSISTENCY extended Kalman filter (EKF)
下载PDF
视觉SLAM研究进展 被引量:27
8
作者 王霞 左一凡 《智能系统学报》 CSCD 北大核心 2020年第5期825-834,共10页
视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉... 视觉SLAM是指相机作为传感器进行自身定位同步创建环境地图。SLAM在机器人、无人机和无人车导航中具有重要作用,定位精度会影响避障精度,地图构建质量直接影响后续路径规划等算法的性能,是智能移动体应用的核心算法。本文介绍主流的视觉SLAM系统架构,包括几种最常见的视觉传感器,以及前端的功能和基于优化的后端。并根据视觉SLAM系统的度量地图的种类不同将视觉SLAM分为稀疏视觉SLAM、半稠密视觉SLAM和稠密视觉SLAM 3种,分别介绍其标志性成果和研究进展,提出视觉SLAM目前存在的问题以及未来可能的发展。 展开更多
关键词 视觉同步定位与创建地图 稀疏视觉slam 半稠密视觉slam 稠密视觉slam 视觉传感器 优化 视觉slam系统 度量地图
下载PDF
一种基于目标检测的动态环境下视觉定位系统
9
作者 钟兴军 吴俊琦 《现代电子技术》 北大核心 2024年第2期160-164,共5页
传统的基于同时定位与建图模型的视觉定位方法需要满足目标点静止假设,但大多数小型机器人的实际应用场景为动态,这限制了现有视觉定位算法在小型机器人上的使用。为此,文中使用YOLOv5卷积神经网络对环境中的动态目标进行检测,然后剔除... 传统的基于同时定位与建图模型的视觉定位方法需要满足目标点静止假设,但大多数小型机器人的实际应用场景为动态,这限制了现有视觉定位算法在小型机器人上的使用。为此,文中使用YOLOv5卷积神经网络对环境中的动态目标进行检测,然后剔除分布在图中的移动特征点,进而改进位姿估计准确性的动态消除方法,并将此方法集成于ORBSLAM2视觉定位系统。改进方案在TUM公共动态数据集上的测试结果表明,基于YOLOv5的检测方法能够快速、准确地识别场景中的动态目标,并显著降低动态环境下位姿估计的绝对误差和相对漂移,是一种有效的动态场景视觉定位方案。 展开更多
关键词 视觉slam 目标检测 定位系统 YOLOv5 特征点提取 动态消除
下载PDF
大尺度弱纹理场景下多源信息融合SLAM算法 被引量:8
10
作者 朱叶青 金瑞 赵良玉 《宇航学报》 EI CAS CSCD 北大核心 2021年第10期1271-1282,共12页
为实现自主机器人大尺度弱纹理场景下局部精准和全局无漂移的状态估计,提出一种视觉惯性与全球导航卫星系统多源信息融合的同时定位与地图构建算法。首先,通过在局部状态估计中加入线特征来更直观表示环境的几何结构信息,有效提升了弱... 为实现自主机器人大尺度弱纹理场景下局部精准和全局无漂移的状态估计,提出一种视觉惯性与全球导航卫星系统多源信息融合的同时定位与地图构建算法。首先,通过在局部状态估计中加入线特征来更直观表示环境的几何结构信息,有效提升了弱纹理场景中关键帧之间相对位姿估计的准确性;其次,通过引入线性误差表示,将线性特征表示为直线端点上的线性约束,从而将线特征整合到基于特征点算法的线性表示中,有效改善算法在重复线特征场景下的鲁棒性。最后,使用多源信息融合算法,融合视觉惯性与GNSS测量信息实现了局部精确和全局无漂移的位姿估计,有效解决了大尺度弱纹理场景下的精准状态估计问题。多个公共数据集的评估结果表明,所提出算法的鲁棒性更强、定位准确度更高。 展开更多
关键词 同时定位与地图构建 视觉惯性系统 多源信息融合 全球导航卫星系统 大尺度弱纹理场景
下载PDF
基于动态边缘化的双目视觉惯性SLAM算法 被引量:3
11
作者 龚欢 何志琴 《计算机应用与软件》 北大核心 2022年第1期275-281,349,共8页
针对单目视觉惯性SLAM算法鲁棒性不高且尺度恢复困难的问题,提出基于动态边缘化的双目视觉惯性SLAM算法(DM-SVI-SLAM)。前端使用光流法进行特征跟踪,利用预积分计算帧间IMU,后端在滑动窗口内融合单/双目匹配点误差、IMU残差及先验误差... 针对单目视觉惯性SLAM算法鲁棒性不高且尺度恢复困难的问题,提出基于动态边缘化的双目视觉惯性SLAM算法(DM-SVI-SLAM)。前端使用光流法进行特征跟踪,利用预积分计算帧间IMU,后端在滑动窗口内融合单/双目匹配点误差、IMU残差及先验误差构建捆集调整的成本函数,利用动态边缘化策略、Dog-Leg算法提升计算效率,回环检测使用词袋方法对关键帧重定位。通过EuRoC数据集评估系统性能,实验结果表明,对比其他前沿VI-SLAM算法,该算法在精度和鲁棒性方面都具有潜力。 展开更多
关键词 同时定位与地图构建 视觉惯性系统 光流跟踪 捆集调整 动态边缘化 Dog-Leg算法
下载PDF
基于AGV的复杂场景视觉SLAM惯导系统设计 被引量:4
12
作者 冯悦鸣 吕勤 李岩 《电子设计工程》 2021年第11期146-150,共5页
针对视觉SLAM系统受到动态环境影响而定位精准度低的问题,提出了基于AGV的复杂场景视觉SLAM惯导系统设计。以AGV为核心结构设计硬件总体架构,使复杂无线通信与数据交互,并在执行完二维码的定位以及导航任务后,通过接收器接收路径规划信... 针对视觉SLAM系统受到动态环境影响而定位精准度低的问题,提出了基于AGV的复杂场景视觉SLAM惯导系统设计。以AGV为核心结构设计硬件总体架构,使复杂无线通信与数据交互,并在执行完二维码的定位以及导航任务后,通过接收器接收路径规划信息。应用激光雷达接收信号源,保证在动态环境下也具有良好的测距效果。设计融合人工信标的多目SLAM算法,依据AGV驱动功能,解算SLAM惯导系统姿态。由实验结果可知,该系统无论在静态环境下还是在运动环境下,都具有精准的定位效果。 展开更多
关键词 AGV 复杂场景 视觉slam 惯导系统
下载PDF
基于Dog-Leg算法的服务机器人视觉SLAM系统 被引量:2
13
作者 王素芳 陈鹏 +1 位作者 张维存 杨林 《计算机工程与设计》 北大核心 2021年第4期1151-1158,共8页
针对原有SLAM系统非线性优化存在迭代次数多、计算时间长、实时性差的问题,设计一种基于阻尼因子更新来计算信赖区域半径的方法;针对YOBY机器人平台,设计并实现基于增强实时性的Dog-Leg算法的多模块SLAM系统;通过EuRoc MAV-MH_05数据集... 针对原有SLAM系统非线性优化存在迭代次数多、计算时间长、实时性差的问题,设计一种基于阻尼因子更新来计算信赖区域半径的方法;针对YOBY机器人平台,设计并实现基于增强实时性的Dog-Leg算法的多模块SLAM系统;通过EuRoc MAV-MH_05数据集的实验分析和真实场景的实际测试,验证了算法的有效性以及SLAM系统在YOBY机器人平台上的可用性。 展开更多
关键词 视觉导航 YOBO机器人 狗腿算法 阻尼因子更新 slam系统
下载PDF
北斗卫星定位系统与VSLAM融合的目标定位方法
14
作者 吕思男 黄家才 +2 位作者 高芳征 李毅搏 陈田 《南京工程学院学报(自然科学版)》 2022年第2期24-30,共7页
针对智能仿生机械狗视觉目标定位精度不高的问题,提出一种单目视觉同步定位与建图和北斗定位信息相结合的定位方法.采用VSLAM算法对每帧图像进行特征点提取匹配,并将二维图像信息转换为所需要的三维空间信息;对从北斗卫星导航系统获取... 针对智能仿生机械狗视觉目标定位精度不高的问题,提出一种单目视觉同步定位与建图和北斗定位信息相结合的定位方法.采用VSLAM算法对每帧图像进行特征点提取匹配,并将二维图像信息转换为所需要的三维空间信息;对从北斗卫星导航系统获取的实时经纬度信息进行处理得到每段时间的位移信息;将单目相机的估计距离和北斗卫星导航系统获取的位移信息进行融合处理,得到CGCS2000坐标系下的相机位姿;通过反投影手段获取感兴趣目标点在空间坐标系下的实际坐标,调取北斗卫星导航系统查询该点的经纬度坐标,从而获取机械狗视觉目标的定位信息;通过试验测试验证了本文方法的有效性、精确性与实时性. 展开更多
关键词 机械狗 视觉slam 全球定位系统 目标定位
下载PDF
A Velocity-Based Rao-Blackwellized Particle Filter Approach to Monocular vSLAM
15
作者 Morteza Farrokhsiar Homayoun Najjaran 《Journal of Intelligent Learning Systems and Applications》 2011年第3期113-121,共9页
This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches... This paper presents a modified Rao-Blackwellized Particle Filter (RBPF) approach for the bearing-only monocular SLAM problem. While FastSLAM 2.0 is known to be one of the most computationally efficient SLAM approaches;it is not applicable to certain formulations of the SLAM problem in which some of the states are not explicitly expressed in the measurement equation. This constraint impacts the versatility of the FastSLAM 2.0 in dealing with partially ob-servable systems, especially in dynamic environments where inclusion of higher order but unobservable states such as velocity and acceleration in the filtering process is highly desirable. In this paper, the formulation of an enhanced RBPF-based SLAM with proper sampling and importance weights calculation for resampling distributions is presented. As an example, the new formulation uses the higher order states of the pose of a monocular camera to carry out SLAM for a mobile robot. The results of the experiments on the robot verify the improved performance of the higher order RBPF under low parallax angles conditions. 展开更多
关键词 FILTERING HIGHER Order FILTER Rao-Blackwellized Particle FILTER Bearing-Only systems visual slam
下载PDF
FeatureMatching Combining Variable Velocity Model with Reverse Optical Flow
16
作者 Chang Zhao Wei Sun +3 位作者 Xiaorui Zhang Xiaozheng He Jun Zuo Wei Zhao 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1083-1094,共12页
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an... The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition. 展开更多
关键词 visual slam feature point matching variable velocity model reverse optical flow
下载PDF
Deep Learning for Visual SLAM in Transportation Robotics:A review 被引量:4
17
作者 Chao Duan Steffen Junginger +2 位作者 Jiahao Huang Kairong Jin Kerstin Thurow 《Transportation Safety and Environment》 EI 2019年第3期177-184,共8页
Visual SLAM(Simultaneously Localization and Mapping)is a solution to achieve localization and mapping of robots simultaneously.Significant achievements have been made during the past decades,geography-based methods ar... Visual SLAM(Simultaneously Localization and Mapping)is a solution to achieve localization and mapping of robots simultaneously.Significant achievements have been made during the past decades,geography-based methods are becoming more and more successful in dealing with static environments.However,they still cannot handle a challenging environment.With the great achievements of deep learning methods in the field of computer vision,there is a trend of applying deep learning methods to visual SLAM.In this paper,the latest research progress of deep learning applied to the field of visual SLAM is reviewed.The outstanding research results of deep learning visual odometry and deep learning loop closure detect are summarized.Finally,future development directions of visual SLAM based on deep learning is prospected. 展开更多
关键词 deep learning visual slam transportation robotics mobile robots
原文传递
A Map Construction Method Based on the Cognitive Mechanism of Rat Brain Hippocampus
18
作者 Naigong Yu Hejie Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期1147-1169,共23页
The entorhinal-hippocampus structure in the mammalian brain is the core area for realizing spatial cognition.However,the visual perception and loop detection methods in the current biomimetic robot navigation model st... The entorhinal-hippocampus structure in the mammalian brain is the core area for realizing spatial cognition.However,the visual perception and loop detection methods in the current biomimetic robot navigation model still rely on traditional visual SLAM schemes and lack the process of exploring and applying biological visual methods.Based on this,we propose amap constructionmethod thatmimics the entorhinal-hippocampal cognitive mechanismof the rat brain according to the response of entorhinal cortex neurons to eye saccades in recent related studies.That is,when mammals are free to watch the scene,the entorhinal cortex neurons will encode the saccade position of the eyeball to realize the episodicmemory function.The characteristics of thismodel are as follows:1)A scenememory algorithmthat relies on visual saccade vectors is constructed to imitate the biological brain’s memory of environmental situation information matches the current scene information with the memory;2)According to the information transmission mechanism formed by the hippocampus and the activation theory of spatial cells,a localization model based on the grid cells of the entorhinal cortex and the place cells of the hippocampus was constructed;3)Finally,the scene memory algorithm is used to correct the errors of the positioning model and complete the process of constructing the cognitive map.The model was subjected to simulation experiments on publicly available datasets and physical experiments using a mobile robot platform to verify the environmental adaptability and robustness of the algorithm.The algorithm will provide a basis for further research into bionic robot navigation. 展开更多
关键词 Entorhinal-Hippocampus visual slam episodic memory spatial cell cognitive map
下载PDF
Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 被引量:6
19
作者 Chao-Lei Wang Tian-Miao Wang +2 位作者 Jian-Hong Liang Yi-Cheng Zhang Yi Zhou 《International Journal of Automation and computing》 EI CSCD 2013年第5期387-396,共10页
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati... This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 展开更多
关键词 visual simultaneous localization and mapping(slam bearing-only observation inertial measurement unit small unmanned aerial vehicles(UAVs) GPS-denied environment
原文传递
多目鱼眼相机系统的视觉里程计解决方案
20
作者 刘一龙 孟维亮 张晓鹏 《中国体视学与图像分析》 2021年第3期278-291,共14页
多目鱼眼相机系统具有可视范围广、成本低廉等诸多优点,成为自动驾驶系统中常用的传感器配置。但其成像畸变大、视角差异明显等特性,使得鱼眼相机间图像数据关联较为困难,大大限制了视觉里程计算法的精度。本文设计了一种可以用于自动... 多目鱼眼相机系统具有可视范围广、成本低廉等诸多优点,成为自动驾驶系统中常用的传感器配置。但其成像畸变大、视角差异明显等特性,使得鱼眼相机间图像数据关联较为困难,大大限制了视觉里程计算法的精度。本文设计了一种可以用于自动驾驶场景下多目鱼眼相机系统的里程计解决方案及可以用于多目鱼眼相机系统的前后端算法,并实现两种鱼眼相机间数据关联模块:一是基于光度的数据关联方法,可以在光照差异明显或存在遮挡等条件下获得稳定的关联结果并纠正系统的尺度偏差;二是基于相机模型变换和描述子匹配的数据关联方法,可以加入优化系统提升里程计精度。实验表明,本文的解决方案可以达到平均约5‰的相对位置误差水平,可以满足自动驾驶场景对里程计的精度要求。 展开更多
关键词 多目鱼眼相机系统 同时建图与定位 特征匹配 视觉里程计
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部