Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical sim...Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical simulation(DNS)indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction,leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag.In addition,experiments are carried out in a water tunnel via electro-magnetic(EM)actuators designed to produce the bidirectional traveling wave excitation as described in calculations.As a result,the actual substantial drag reduction is realized successfully in these experiments.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11172140 and 11202102)the Specialized Research Fund for Doctoral Program of Higher Education(Grant No.20123219120050)the EU FP6 Framework Program AVERT and the Faculty of Engineering,University of Nottingham
文摘Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical simulation(DNS)indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction,leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag.In addition,experiments are carried out in a water tunnel via electro-magnetic(EM)actuators designed to produce the bidirectional traveling wave excitation as described in calculations.As a result,the actual substantial drag reduction is realized successfully in these experiments.